Activation of micro, delta or kappa opioid receptors by DAMGO, DPDPE, U-50488 or U-69593 respectively causes antinociception in the formalin test in the naked mole-rat (Heterocephalus glaber)

Data available on the role of the opioid systems of the naked mole-rat in nociception is scanty and unique compared to that of other rodents. In the current study, the effect of DAMGO, DPDPE and U-50488 and U-69593 on formalin-induced (20 microl, 10%) nociception were investigated. Nociceptive-like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology, biochemistry and behavior biochemistry and behavior, 2009-02, Vol.91 (4), p.566
Hauptverfasser: Towett, Philemon Kipkemoi, Kanui, Titus Ikusya, Maloiy, Geoffrey Moriaso Ole, Juma, Francis, Olongida Ole Miaron, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data available on the role of the opioid systems of the naked mole-rat in nociception is scanty and unique compared to that of other rodents. In the current study, the effect of DAMGO, DPDPE and U-50488 and U-69593 on formalin-induced (20 microl, 10%) nociception were investigated. Nociceptive-like behaviors were quantified by scoring in blocks of 5 min the total amount of time (s) the animal spent scratching/biting the injected paw in the early (0-5 min) and in the late (25-60 min) phase of the test. In both the early and late phases, administration of 1 or 5 mg/kg of DAMGO or DPDPE caused a naloxone-attenuated decrease in the mean scratching/biting time. U-50488 and U-69593 at all the doses tested did not significantly change the mean scratching/biting time in the early phase. However, in the late phase U-50488 or U-69593 at the highest doses tested (1 or 5 mg/kg or 0.025 or 0.05 mg/kg, respectively) caused a statistically significant and naloxone-attenuated decrease in the mean scratching/biting time. The data showed that mu, delta or kappa-selective opioids causes antinociception in the formalin test in this rodent, adding novel information on the role of opioid systems of the animal on pain regulation.
ISSN:0091-3057
DOI:10.1016/j.pbb.2008.09.011