Adaptive Feedback Control by Constrained Approximate Dynamic Programming

A constrained approximate dynamic programming (ADP) approach is presented for designing adaptive neural network (NN) controllers with closed-loop stability and performance guarantees. Prior knowledge of the linearized equations of motion is used to guarantee that the closed-loop system meets perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2008-08, Vol.38 (4), p.982-987
Hauptverfasser: Ferrari, S., Steck, J.E., Chandramohan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A constrained approximate dynamic programming (ADP) approach is presented for designing adaptive neural network (NN) controllers with closed-loop stability and performance guarantees. Prior knowledge of the linearized equations of motion is used to guarantee that the closed-loop system meets performance and stability objectives when the plant operates in a linear parameter-varying (LPV) regime. In the presence of unmodeled dynamics or failures, the NN controller adapts to optimize its performance online, whereas constrained ADP guarantees that the LPV baseline performance is preserved at all times. The effectiveness of an adaptive NN flight controller is demonstrated for simulated control failures, parameter variations, and near-stall dynamics.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2008.924140