Adaptive Feedback Control by Constrained Approximate Dynamic Programming
A constrained approximate dynamic programming (ADP) approach is presented for designing adaptive neural network (NN) controllers with closed-loop stability and performance guarantees. Prior knowledge of the linearized equations of motion is used to guarantee that the closed-loop system meets perform...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2008-08, Vol.38 (4), p.982-987 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A constrained approximate dynamic programming (ADP) approach is presented for designing adaptive neural network (NN) controllers with closed-loop stability and performance guarantees. Prior knowledge of the linearized equations of motion is used to guarantee that the closed-loop system meets performance and stability objectives when the plant operates in a linear parameter-varying (LPV) regime. In the presence of unmodeled dynamics or failures, the NN controller adapts to optimize its performance online, whereas constrained ADP guarantees that the LPV baseline performance is preserved at all times. The effectiveness of an adaptive NN flight controller is demonstrated for simulated control failures, parameter variations, and near-stall dynamics. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2008.924140 |