Decentralized Learning in Markov Games

Learning automata (LA) were recently shown to be valuable tools for designing multiagent reinforcement learning algorithms. One of the principal contributions of the LA theory is that a set of decentralized independent LA is able to control a finite Markov chain with unknown transition probabilities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2008-08, Vol.38 (4), p.976-981
Hauptverfasser: Vrancx, P., Verbeeck, K., Nowe, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning automata (LA) were recently shown to be valuable tools for designing multiagent reinforcement learning algorithms. One of the principal contributions of the LA theory is that a set of decentralized independent LA is able to control a finite Markov chain with unknown transition probabilities and rewards. In this paper, we propose to extend this algorithm to Markov games-a straightforward extension of single-agent Markov decision problems to distributed multiagent decision problems. We show that under the same ergodic assumptions of the original theorem, the extended algorithm will converge to a pure equilibrium point between agent policies.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2008.920998