Deep, Narrow Sigmoid Belief Networks Are Universal Approximators

In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2008-11, Vol.20 (11), p.2629-2636
Hauptverfasser: Sutskever, Ilya, Hinton, Geoffrey E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2636
container_issue 11
container_start_page 2629
container_title Neural computation
container_volume 20
creator Sutskever, Ilya
Hinton, Geoffrey E.
description In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way.
doi_str_mv 10.1162/neco.2008.12-07-661
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18533819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21043336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-a0777d1dd63fa9d9e5d13d0e5470e2cdab3f4cc890780015c714ea8bbdf6a9fc3</originalsourceid><addsrcrecordid>eNqNkUtvFDEQhC1ERJbAL0BCIyQ4ZTbdtsf23FhCHkhROEAkbpbX9iCHmfFg7ybAr49XuwKEeJ368lV1dRchTxDmiIIejd7GOQVQc6Q1yFoIvEdm2DColVIf7pMZqLatpRBynzzM-RoABELzgOyjahhT2M7Iy9feT4fVpUkp3lbvwschBle98n3wXXXpV7cxfcrVIvnqagw3PmXTV4tpSvFLGMwqpvyI7HWmz_7xbh6Qq9OT98fn9cXbszfHi4vaCqZWtQEppUPnBOtM61rfOGQOfMMleGqdWbKOW6takAoAGyuRe6OWS9cJ03aWHZAXW9-y-_Pa55UeQra-783o4zpr0QrkwNk_QYogqOLN_4DFjokCPvsFvI7rNJZrC4MUleK8QGwL2RRzTr7TUyovSl81gt70pTd96U1fGqkGqUtfRfV0Z71eDt790OwKKsDzHWCyNX2XzGhD_s5RkKJBUIU733JD-CneZuUNhYCoGVDeyCKgWOLokuJbmP6Q6eg3Vn-74g6FkMK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211218844</pqid></control><display><type>article</type><title>Deep, Narrow Sigmoid Belief Networks Are Universal Approximators</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Sutskever, Ilya ; Hinton, Geoffrey E.</creator><creatorcontrib>Sutskever, Ilya ; Hinton, Geoffrey E.</creatorcontrib><description>In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2008.12-07-661</identifier><identifier>PMID: 18533819</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Accuracy ; Algorithms ; Applied sciences ; Approximation ; Artificial intelligence ; Belief networks ; Biological and medical sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Learning ; Learning and adaptive systems ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Neural Networks (Computer) ; Nonlinear Dynamics</subject><ispartof>Neural computation, 2008-11, Vol.20 (11), p.2629-2636</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright MIT Press Journals Nov 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-a0777d1dd63fa9d9e5d13d0e5470e2cdab3f4cc890780015c714ea8bbdf6a9fc3</citedby><cites>FETCH-LOGICAL-c638t-a0777d1dd63fa9d9e5d13d0e5470e2cdab3f4cc890780015c714ea8bbdf6a9fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2008.12-07-661$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20765108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18533819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutskever, Ilya</creatorcontrib><creatorcontrib>Hinton, Geoffrey E.</creatorcontrib><title>Deep, Narrow Sigmoid Belief Networks Are Universal Approximators</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Belief networks</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtvFDEQhC1ERJbAL0BCIyQ4ZTbdtsf23FhCHkhROEAkbpbX9iCHmfFg7ybAr49XuwKEeJ368lV1dRchTxDmiIIejd7GOQVQc6Q1yFoIvEdm2DColVIf7pMZqLatpRBynzzM-RoABELzgOyjahhT2M7Iy9feT4fVpUkp3lbvwschBle98n3wXXXpV7cxfcrVIvnqagw3PmXTV4tpSvFLGMwqpvyI7HWmz_7xbh6Qq9OT98fn9cXbszfHi4vaCqZWtQEppUPnBOtM61rfOGQOfMMleGqdWbKOW6takAoAGyuRe6OWS9cJ03aWHZAXW9-y-_Pa55UeQra-783o4zpr0QrkwNk_QYogqOLN_4DFjokCPvsFvI7rNJZrC4MUleK8QGwL2RRzTr7TUyovSl81gt70pTd96U1fGqkGqUtfRfV0Z71eDt790OwKKsDzHWCyNX2XzGhD_s5RkKJBUIU733JD-CneZuUNhYCoGVDeyCKgWOLokuJbmP6Q6eg3Vn-74g6FkMK8</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Sutskever, Ilya</creator><creator>Hinton, Geoffrey E.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Deep, Narrow Sigmoid Belief Networks Are Universal Approximators</title><author>Sutskever, Ilya ; Hinton, Geoffrey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-a0777d1dd63fa9d9e5d13d0e5470e2cdab3f4cc890780015c714ea8bbdf6a9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Belief networks</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutskever, Ilya</creatorcontrib><creatorcontrib>Hinton, Geoffrey E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutskever, Ilya</au><au>Hinton, Geoffrey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep, Narrow Sigmoid Belief Networks Are Universal Approximators</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>20</volume><issue>11</issue><spage>2629</spage><epage>2636</epage><pages>2629-2636</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>18533819</pmid><doi>10.1162/neco.2008.12-07-661</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2008-11, Vol.20 (11), p.2629-2636
issn 0899-7667
1530-888X
language eng
recordid cdi_pubmed_primary_18533819
source MEDLINE; MIT Press Journals
subjects Accuracy
Algorithms
Applied sciences
Approximation
Artificial intelligence
Belief networks
Biological and medical sciences
Computer science
control theory
systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Learning
Learning and adaptive systems
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Neural Networks (Computer)
Nonlinear Dynamics
title Deep, Narrow Sigmoid Belief Networks Are Universal Approximators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep,%20Narrow%20Sigmoid%20Belief%20Networks%20Are%20Universal%20Approximators&rft.jtitle=Neural%20computation&rft.au=Sutskever,%20Ilya&rft.date=2008-11-01&rft.volume=20&rft.issue=11&rft.spage=2629&rft.epage=2636&rft.pages=2629-2636&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2008.12-07-661&rft_dat=%3Cproquest_pubme%3E21043336%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211218844&rft_id=info:pmid/18533819&rfr_iscdi=true