Deep, Narrow Sigmoid Belief Networks Are Universal Approximators
In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impracti...
Gespeichert in:
Veröffentlicht in: | Neural computation 2008-11, Vol.20 (11), p.2629-2636 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/neco.2008.12-07-661 |