Behavioral Actions of Intranasal Application of Dopamine: Effects on Forced Swimming, Elevated Plus-Maze and Open Field Parameters
Background: Recently, we found evidence that intra-nasally administered dopamine (DA), can enter the brain, leading to an immediate increase in extracellular DA levels in striatal subregions. This offers a potential alternative approach to target the brain with exogenous DA, which otherwise cannot c...
Gespeichert in:
Veröffentlicht in: | Neuropsychobiology 2008-01, Vol.57 (1-2), p.70-79 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Recently, we found evidence that intra-nasally administered dopamine (DA), can enter the brain, leading to an immediate increase in extracellular DA levels in striatal subregions. This offers a potential alternative approach to target the brain with exogenous DA, which otherwise cannot cross the blood-brain barrier. Here, we examined whether intra-nasally applied DA also exerts behavioral activity on mesocortical and nigrostriatal dopaminergic functions. Method: Male Wistar rats (3–4 months) were tested for potential behavioral effects of intra-nasally applied DA (0.03, 0.3 or 3.0 mg/kg) in the forced swimming test (FST) for antidepressant-like activity, elevated plus-maze for anxiety-related behavior, and on motor activity in a novel and familiar environment. Results: Intra-nasally administered dopamine in a dose of 0.3 mg/kg exerted antidepressant-like activity in the FST, but had neither anxiolytic-like nor anxiogenic-like effects in the elevated plus-maze. Furthermore, intra-nasal dopamine stimulated locomotor activity in a familiar, but not novel, open field. Conclusions: These results support the view that intra-nasally applied DA can act on the central nervous system by entering the brain via the nose-brain pathway, making this kind of application procedure a promising alternative for targeting the brain, and thus treating disorders involving mesocortical and/or nigrostriatal dopaminergic disturbances. |
---|---|
ISSN: | 0302-282X 1423-0224 |
DOI: | 10.1159/000135640 |