Symmetric RBF Classifier for Nonlinear Detection in Multiple-Antenna-Aided Systems
In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called "overloaded" multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RB...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2008-05, Vol.19 (5), p.737-745 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called "overloaded" multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient. The proposed solution is capable of providing a signal-to-noise ratio (SNR) gain in excess of 8 dB against the powerful linear minimum bit error rate (BER) benchmark, when supporting four users with the aid of two receive antennas or seven users with four receive antenna elements. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2007.911745 |