Symmetric RBF Classifier for Nonlinear Detection in Multiple-Antenna-Aided Systems

In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called "overloaded" multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-05, Vol.19 (5), p.737-745
Hauptverfasser: Sheng Chen, Wolfgang, A., Harris, C.J., Hanzo, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called "overloaded" multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient. The proposed solution is capable of providing a signal-to-noise ratio (SNR) gain in excess of 8 dB against the powerful linear minimum bit error rate (BER) benchmark, when supporting four users with the aid of two receive antennas or seven users with four receive antenna elements.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2007.911745