Effects of dietary organic and inorganic trace mineral levels on sow reproductive performances and daily mineral intakes over six parities
Dietary trace mineral sources and levels were fed to developing gilts to evaluate their performance responses during the growth phase, but treatments were continued into the reproductive phase in which subsequent reproductive responses were evaluated. In Exp. 1, three groups of gilts (n = 216) were...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2008-09, Vol.86 (9), p.2247-2260 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dietary trace mineral sources and levels were fed to developing gilts to evaluate their performance responses during the growth phase, but treatments were continued into the reproductive phase in which subsequent reproductive responses were evaluated. In Exp. 1, three groups of gilts (n = 216) were used in a 2 x 2 factorial in a randomized complete block design (6 replicates) with treatment diets initially fed at 30 kg of BW. The first factor was trace mineral source (organic or inorganic), whereas the second factor evaluated dietary levels. The NRC requirement was the first level evaluated, whereas the second level was formulated to average industry standards (IND). Organic trace minerals were mineral proteinates, whereas the inorganic minerals were provided in salt form. The results of Exp. 1 indicated that trace mineral source or level did not affect gilt growth or feed performance responses to 110 kg of BW. Experiment 2 continued with the same females but was a 2 x 3 factorial in a split-plot design using 3 groups of females over a 6-parity period and had a total of 375 farrowings. Factors in Exp. 2 were the same as in Exp. 1, except that 2 additional pens of gilts during their development had been fed the IND level trace mineral levels of both trace mineral sources. At breeding, the gilts from these 2 additional pens were continued on the same trace mineral source and level but fed greater dietary Ca and P levels (IND + Ca:P). Litters were standardized by 3 d postpartum within each farrowing. Sows fed organic trace minerals farrowed more (P < 0.05) total (12.2 vs. 11.3) and live pigs (11.3 vs. 10.6) compared with sows fed inorganic trace minerals. Sows fed the IND + Ca:P level tended to have fewer (P < 0.10) total pigs born for both trace mineral sources. Litter birth weights were heavier (P < 0.05) when sows were fed organic trace minerals, but individual piglet weights were similar. Nursing pig ADG tended to be greater (P < 0.10) when sows were fed organic trace minerals. Other sow reproductive traits (BW, feed intake, and rebreeding interval) were not affected by trace mineral source or level. Daily mineral intake increased by parity but declined when trace mineral intakes were expressed on an amount per kilogram of BW and declined during later lactations. These results suggest that feeding sows organic trace minerals may improve sow reproductive performance, but there were minimal effects on other reproductive measurements. |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.2527/jas.2007-0431 |