Relevance-Based Feature Extraction for Hyperspectral Images

Hyperspectral imagery affords researchers all discriminating details needed for fine delineation of many material classes. This delineation is essential for scientific research ranging from geologic to environmental impact studies. In a data mining scenario, one cannot blindly discard information be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-04, Vol.19 (4), p.658-672
Hauptverfasser: Mendenhall, M.J., Merenyi, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral imagery affords researchers all discriminating details needed for fine delineation of many material classes. This delineation is essential for scientific research ranging from geologic to environmental impact studies. In a data mining scenario, one cannot blindly discard information because it can destroy discovery potential. In a supervised classification scenario, however, the preselection of classes presents one with an opportunity to extract a reduced set of meaningful features without degrading classification performance. Given the complex correlations found in hyperspectral data and the potentially large number of classes, meaningful feature extraction is a difficult task. We turn to the recent neural paradigm of generalized relevance learning vector quantization (GRLVQ) [B. Hammer and T. Villmann, Neural Networks, vol. 15, pp. 1059-1068, 2002], which is based on, and substantially extends, learning vector quantization (LVQ) [T. Kohonen, Self-Organizing Maps, Berlin, Germany: Springer-Verlag, 2001] by learning relevant input dimensions while incorporating classification accuracy in the cost function. By addressing deficiencies in GRLVQ, we produce an improved version, GRLVQI, which is an effective analysis tool for high-dimensional data such as remotely sensed hyperspectral data. With an independent classifier, we show that the spectral features deemed relevant by our improved GRLVQI result in a better classification for a predefined set of surface materials than using all available spectral channels.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2007.914156