Solution of inverse problems in image processing by wavelet expansion
We describe a wavelet-based approach to linear inverse problems in image processing. In this approach, both the images and the linear operator to be inverted are represented by wavelet expansions, leading to a multiresolution sparse matrix representation of the inverse problem. The constraints for a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1995-05, Vol.4 (5), p.579-593 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a wavelet-based approach to linear inverse problems in image processing. In this approach, both the images and the linear operator to be inverted are represented by wavelet expansions, leading to a multiresolution sparse matrix representation of the inverse problem. The constraints for a regularized solution are enforced through wavelet expansion coefficients. A unique feature of the wavelet approach is a general and consistent scheme for representing an operator in different resolutions, an important problem in multigrid/multiresolution processing. This and the sparseness of the representation induce a multigrid algorithm. The proposed approach was tested on image restoration problems and produced good results.< > |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/83.382493 |