Coarse-coded higher-order neural networks for PSRI object recognition
The authors describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096*4096 pixel input field independent of transformations in trans...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural networks 1993-03, Vol.4 (2), p.276-283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096*4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, the authors empirically determine the limits of the coarse coding technique in the position, scale, and rotation invariant (PSRI) object recognition domain.< > |
---|---|
ISSN: | 1045-9227 1941-0093 |
DOI: | 10.1109/72.207615 |