Coarse-coded higher-order neural networks for PSRI object recognition

The authors describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096*4096 pixel input field independent of transformations in trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1993-03, Vol.4 (2), p.276-283
Hauptverfasser: Spirkovska, L., Reid, M.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096*4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, the authors empirically determine the limits of the coarse coding technique in the position, scale, and rotation invariant (PSRI) object recognition domain.< >
ISSN:1045-9227
1941-0093
DOI:10.1109/72.207615