GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection
This paper describes the generic obstacle and lane detection system (GOLD), a stereo vision-based hardware and software architecture to be used on moving vehicles to increment road safety. Based on a full-custom massively parallel hardware, it allows to detect both generic obstacles (without constra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1998-01, Vol.7 (1), p.62-81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the generic obstacle and lane detection system (GOLD), a stereo vision-based hardware and software architecture to be used on moving vehicles to increment road safety. Based on a full-custom massively parallel hardware, it allows to detect both generic obstacles (without constraints on symmetry or shape) and the lane position in a structured environment (with painted lane markings) at a rate of 10 Hz. Thanks to a geometrical transform supported by a specific hardware module, the perspective effect is removed from both left and right stereo images; the left is used to detect lane markings with a series of morphological filters, while both remapped stereo images are used for the detection of free-space in front of the vehicle. The output of the processing is displayed on both an on-board monitor and a control-panel to give visual feedbacks to the driver. The system was tested on the mobile laboratory (MOB-LAB) experimental land vehicle, which was driven for more than 3000 km along extra-urban roads and freeways at speeds up to 80 km/h, and demonstrated its robustness with respect to shadows and changing illumination conditions, different road textures, and vehicle movement. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/83.650851 |