Deterministic nonmonotone strategies for effective training of multilayer perceptrons
We present deterministic nonmonotone learning strategies for multilayer perceptrons (MLPs), i.e., deterministic training algorithms in which error function values are allowed to increase at some epochs. To this end, we argue that the current error function value must satisfy a nonmonotone criterion...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2002-11, Vol.13 (6), p.1268-1284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present deterministic nonmonotone learning strategies for multilayer perceptrons (MLPs), i.e., deterministic training algorithms in which error function values are allowed to increase at some epochs. To this end, we argue that the current error function value must satisfy a nonmonotone criterion with respect to the maximum error function value of the M previous epochs, and we propose a subprocedure to dynamically compute M. The nonmonotone strategy can be incorporated in any batch training algorithm and provides fast, stable, and reliable learning. Experimental results in different classes of problems show that this approach improves the convergence speed and success percentage of first-order training algorithms and alleviates the need for fine-tuning problem-depended heuristic parameters. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2002.804225 |