Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis
SUMOylation of transcription factors often attenuates transcription activity. This regulation of protein activity allows more diversity in the control of gene expression. Interferon regulatory factor-1 (IRF-1) was originally identified as a regulator of IFN-α/β, and its expression is induced by vira...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-10, Vol.104 (43), p.17028-17033 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMOylation of transcription factors often attenuates transcription activity. This regulation of protein activity allows more diversity in the control of gene expression. Interferon regulatory factor-1 (IRF-1) was originally identified as a regulator of IFN-α/β, and its expression is induced by viral infection or IFN stimulation. Accumulating evidence supports the theory that IRF-1 functions as a tumor suppressor and represses the transformed phenotype. Here we report that the level of SUMOylated IRF-1 is elevated in tumors. Site-directed mutagenesis experiments disclose that the SUMOylation sites of IRF-1 are identical to the major ubiquitination sites. Consequently, SUMOylated IRF-1 displays enhanced resistance to degradation. SUMOylation of IRF-1 attenuates its transcription activity, and SUMOylated IRF-1 inhibits apoptosis by repression of its transcriptional activity. These data support a mechanism whereby SUMOylation of IRF-1 inactivates its tumor suppressor function, which facilitates resistance to the immune response. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0609852104 |