Error Propagation Framework for Diffusion Tensor Imaging via Diffusion Tensor Representations

An analytical framework of error propagation for diffusion tensor imaging (DTI) is presented. Using this framework, any uncertainty of interest related to the diffusion tensor elements or to the tensor-derived quantities such as eigenvalues, eigenvectors, trace, fractional anisotropy (FA), and relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2007-08, Vol.26 (8), p.1017-1034
Hauptverfasser: Cheng Guan Koay, Lin-Ching Chang, Pierpaoli, C., Basser, P.C.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analytical framework of error propagation for diffusion tensor imaging (DTI) is presented. Using this framework, any uncertainty of interest related to the diffusion tensor elements or to the tensor-derived quantities such as eigenvalues, eigenvectors, trace, fractional anisotropy (FA), and relative anisotropy (RA) can be analytically expressed and derived from the noisy diffusion-weighted signals. The proposed framework elucidates the underlying geometric relationship between the variability of a tensor-derived quantity and the variability of the diffusion weighted signals through the nonlinear least squares objective function of DTI. Monte Carlo simulations are carried out to validate and investigate the basic statistical properties of the proposed framework.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2007.897415