Effect of low-phytate barley or phytase supplementation to a barley-soybean meal diet on phosphorus retention and excretion by grower pigs

Two studies were conducted to determine the effect of diets containing low-phytate barley or supplemented with phytase on P balance and excretion in grower pigs. In Exp. 1, eight 32-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets that contained 96% barley: normal-ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2007-11, Vol.85 (11), p.2941-2948
Hauptverfasser: Htoo, J.K, Sauer, W.C, Yáñez, J.L, Cervantes, M, Zhang, Y, Helm, J.H, Zijlstra, R.T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two studies were conducted to determine the effect of diets containing low-phytate barley or supplemented with phytase on P balance and excretion in grower pigs. In Exp. 1, eight 32-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets that contained 96% barley: normal-phytate hulled barley (HB), low-phytate hulled barley (LPHB), normal-phytate hull-less barley (HLB), and low-phytate hull-less barley (LPHLB). The barley cultivars contained 0.16, 0.05, 0.24, and 0.03% phytate, respectively. Inorganic P (iP) was added to the HB and HLB diets to meet the 1998 National Research Council recommendation of available P (aP, 0.23%), whereas LPHB and LPHLB contained sufficient aP. The diets were fed at 2.5 times the maintenance requirement for ME. The apparent total tract digestibilities (ATTD) of P did not differ between the hulled and hull-less barley diets, but P retention (%) and excretion were greater in pigs fed the hull-less barley diets (P < 0.05). The ATTD of P was greater and P excretion was 35% lower in pigs fed the low-phytate compared with the normal-phytate diets (P < 0.001). The amount of P retained (g/d) was greater (P < 0.001) in pigs fed low-phytate barley, reflecting an ATTD of P of 65 and 49% for low-phytate and normal-phytate barley, respectively (P < 0.001). In Exp. 2, eight 21-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets based on barley and soybean meal (SBM): HB-SBM, HB-SBM + iP, HB-SBM + phytase, and LPHB-SBM. The HB-SBM and HB-SBM + phytase diets were deficient in aP, whereas the HB-SBM + iP and LPHB-SBM diets had adequate aP. The feeding regimen was similar to that of Exp. 1. Adding iP to the HB-SBM diet did not affect the ATTD but increased the amount of P retained (g/d) and excreted (P < 0.001). The ATTD and amount of P retained (g/d) did not differ among pigs fed the HB-SBM + iP, HB-SBM + phytase, and LPHB-SBM diets. However, pigs fed the HB-SBM + phytase and LPHB-SBM diets excreted 32 and 29% less P, respectively, than pigs fed the HB-SBM + iP diet (P < 0.05), confirming that low-phytate barley is as effective as supplemental phytase in improving P digestibility and utilization and decreasing P excretion in grower pigs.
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2006-816