Activation of peroxisome proliferator-activated receptor-gamma protects pancreatic beta-cells from cytokine-induced cytotoxicity via NF kappaB pathway

Diabetes mellitus is characterized by cytokine-induced insulitis and a deficit in beta-cell mass. Ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) have been shown to have anti-inflammatory effects in various experimental models. We questioned whether activation of endogenous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2007, Vol.39 (6), p.1260
Hauptverfasser: Kim, Eun-Kyung, Kwon, Kang-Beom, Koo, Bon-Sun, Han, Mi-Jeong, Song, Mi-Young, Song, Eun-Kyung, Han, Myung-Kwan, Park, Jin-Woo, Ryu, Do-Gon, Park, Byung-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetes mellitus is characterized by cytokine-induced insulitis and a deficit in beta-cell mass. Ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) have been shown to have anti-inflammatory effects in various experimental models. We questioned whether activation of endogenous PPAR-gamma by either PPAR-gamma ligands or adenoviral-directed overexpression of PPAR-gamma (Ad-PPAR-gamma) could inhibit cytokine-induced beta-cell death in RINm5F (RIN) cells, a rat insulinoma cell line. Treatment of RIN cells with interleukin-1 beta (IL-1 beta) and interferon-gamma (IFN-gamma) induced beta-cell damage through NF kappaB-dependent signaling pathways. Activation of PPAR-gamma by PPAR-gamma ligands or Ad-PPAR-gamma inhibited IL-1 beta and IFN-gamma-stimulated nuclear translocation of the p65 subunit and DNA binding activity. NF kappaB target gene expression and their product formation, namely inducible nitric oxide synthase and cyclooxygenase-2 were decreased by PPAR-gamma activation, as established by real-time PCR, Western blots and measurements of NO and PGE(2). The mechanism by which PPAR-gamma activation inhibited NF kappaB-dependent cell death signals appeared to involve the inhibition of I kappa B alpha degradation, evidenced by inhibition of cytokine-induced NF kappaB-dependent signaling events by Ad-I kappaB alpha (S32A, S36A), non-degradable I kappaB alpha mutant. I kappaB beta mutant, Ad-I kappaB beta (S19A, S23A) was not effective in preventing cytokine toxicity. Furthermore, a protective effect of PPAR-gamma ligands was proved by assaying for normal insulin secreting capacity in response to glucose in isolated rat pancreatic islets. The beta-cell protective function of PPAR-gamma ligands might serve to counteract cytokine-induced beta-cell destruction.
ISSN:1357-2725