Control of reproductive dominance by the thelytoky gene in honeybees

Differentiation into castes and reproductive division of labour are a characteristics of eusocial insects. Caste determination occurs at an early stage of larval development in social bees and is achieved via differential nutrition irrespective of the genotype. Workers are usually subordinate to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology letters (2005) 2007-06, Vol.3 (3), p.292-295
Hauptverfasser: Lattorff, H. Michael G, Moritz, Robin F.A, Crewe, Robin M, Solignac, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Differentiation into castes and reproductive division of labour are a characteristics of eusocial insects. Caste determination occurs at an early stage of larval development in social bees and is achieved via differential nutrition irrespective of the genotype. Workers are usually subordinate to the queen and altruistically refrain from reproduction. Workers of the Cape honeybee (Apis mellifera capensis) do not necessarily refrain from reproduction. They have the unique ability to produce female offspring parthenogenetically (thelytoky) and can develop into 'pseudoqueens'. Although these are morphologically workers, they develop a queen-like phenotype with respect to physiology and behaviour. Thelytoky is determined by a single gene (th) and we show that this gene also influences other traits related to the queen phenotype, including egg production and queen pheromone synthesis. Using 566 microsatellite markers, we mapped this gene to chromosome 13 and identified a candidate locus thelytoky, similar to grainy head (a transcription factor), which has been shown to be highly expressed in queens of eusocial insects. We therefore suggest that this gene is not only important for determining the pseudoqueen phenotype in A. m. capensis workers, but is also of general importance in regulating the gene cascades controlling reproduction and sterility in female social bees.
ISSN:1744-9561
1744-957X
DOI:10.1098/rsbl.2007.0083