Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds

The purpose of this research was to develop and characterize a novel, slowly degrading polyester-urethane. In this study, a polyester-urethane with a crystalline segment of poly((R)-3-hydroxybutyric acid)-diol linked by a diisocyanate to an amorphous segment of poly(epsilon-caprolactone-co-glycolide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2007-09, Vol.82 (3), p.669
Hauptverfasser: Henry, Jerome A, Simonet, Marc, Pandit, Abhay, Neuenschwander, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this research was to develop and characterize a novel, slowly degrading polyester-urethane. In this study, a polyester-urethane with a crystalline segment of poly((R)-3-hydroxybutyric acid)-diol linked by a diisocyanate to an amorphous segment of poly(epsilon-caprolactone-co-glycolide)-diol was synthesized. Porous and nonporous scaffolds were processed using electrospinning and solvent casting respectively. The morphology, pore size, and filament diameter of the mesh and film were characterized using scanning electron microscopy (SEM). The thermal properties were examined using differential scanning calorimetry (DSC). A degradation study was initiated to characterize the change in mechanical properties, molecular weight, and surface morphology over 12 months using tensile testing, gel permeation chromatography (GPC), and SEM respectively. Concomitantly, cell morphology and viability on these variants were investigated using fibroblasts. The mechanical test data indicated a gradual decrease in the ultimate tensile strength and strain to break while the modulus of elasticity remained stable. GPC data suggested a slow decrease in the molecular weight while SEM examination revealed changed surface morphologies. The in vitro studies implied that the novel polyester-urethane was not cytotoxic and that the mesh was a more favorable scaffold towards cell viability. The summation of these results suggests that this polyester-urethane has the potential for tissue engineering applications.
ISSN:1549-3296