Epitope Mapping by Mutagenesis Distinguishes between the Two Tertiary Structures of the Histidine-Containing Protein HPr

Thirty-four of the 85 residues of the histidine-containing protein HPr of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system have been changed by site-directed mutagenesis. Many of the mutations have wild-type activity suggesting an unaltered tertiary structure but have altered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-06, Vol.88 (11), p.4877-4881
Hauptverfasser: Sharma, Sadhana, Georges, Fawzy, Louis T. J. Delbaere, Lee, Jeremy S., Klevit, Rachel E., Waygood, E. Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thirty-four of the 85 residues of the histidine-containing protein HPr of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system have been changed by site-directed mutagenesis. Many of the mutations have wild-type activity suggesting an unaltered tertiary structure but have altered binding to three monoclonal antibodies: Jel42, Jel44, and Jel323. This altered binding defines the residues that are involved in the epitopes of HPr. At present, two different three-dimensional structures have been determined for HPr, one from two-dimensional nuclear magnetic resonance spectra and the other from x-ray diffraction of HPr crystals. The epitope mapping for Jel42 does not distinguish between the tertiary structures. However, only the HPr structure derived from two-dimensional nuclear magnetic resonance spectra is consistent with a contiguous surface binding site that can be defined as the epitope for Jel44. Thus the x-ray structure may represent a partially unfolded HPr.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.11.4877