A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal

The pathogenic bacterium Pseudomonas aeruginosa uses acyl-homoserine lactone quorum-sensing signals to coordinate the expression of a battery of virulence genes in a cascade of regulatory events. The quorum-sensing signal that triggers the cascade is N -3-oxo-dodecanoyl homoserine lactone (3OC12-HSL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (45), p.16948-16952
Hauptverfasser: Müh, Ute, Hare, Brian J., Duerkop, Breck A., Schuster, Martin, Hanzelka, Brian L., Heim, Roger, Olson, Eric R., Greenberg, E. Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pathogenic bacterium Pseudomonas aeruginosa uses acyl-homoserine lactone quorum-sensing signals to coordinate the expression of a battery of virulence genes in a cascade of regulatory events. The quorum-sensing signal that triggers the cascade is N -3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), which interacts with two signal receptor-transcription factors, LasR and QscR. This signal is base labile, and it is degraded by mammalian PON lactonases. We have identified a structurally unrelated triphenyl mimic of 3OC12-HSL that is base-insensitive and PON-resistant. The triphenyl mimic seems to interact specifically with LasR but not with QscR. In silico analysis suggests that the mimic fits into the 3OC12-HSL-binding site of LasR and makes key contacts with LasR. The triphenyl mimic is an excellent scaffold for developing quorum-sensing inhibitors, and its stability and potency make it ideal for biotechnology uses such as heterologous gene expression. autoinduction bacterial communication LasR sociomicrobiology
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0608348103