Intracellular recordings from supporting cells in the guinea pig cochlea: DC potentials

E. C. Oesterle and P. Dallos Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60201. 1. Supporting cells and hair cells from the low-frequency region of the guinea pig cochlea were studied in vivo using intracellular recording and horseradish-peroxidase (HRP) ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 1990-08, Vol.64 (2), p.617-636
Hauptverfasser: Oesterle, E. C, Dallos, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:E. C. Oesterle and P. Dallos Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60201. 1. Supporting cells and hair cells from the low-frequency region of the guinea pig cochlea were studied in vivo using intracellular recording and horseradish-peroxidase (HRP) marking techniques. 2. The response of third- and fourth-turn support cells to tone bursts is composed of a number of components: an AC component at the frequency of the stimulating tone, harmonic components, a DC component present at the onset of the stimulating tone (the early DC), a slowly developing depolarization, and a slowly decaying afterpotential. 3. The early DC of support-cell responses is generally less than or equal to that in the adjacent organ of Corti fluids [at the best frequency (BF) for an 80 or 90 dB sound pressure level (SPL) stimulus the average early DC of support-cell responses is 0.9 times that of the adjacent fluids; n = 71], and both are less than that seen in the hair cells [average early DC of inner hair-cell (IHC) responses at the same sound levels is 14.2 times that in the adjacent organ fluids, n = 15; average early DC of outer hair-cell (OHC) responses is 11.5 times that in nearby organ fluids, n = 2)]. 4. The end DC, magnitude of the DC response shortly before signal end, in responses of support cells deep into Corti's organ [e.g., pillar, inner phalangeal, border cells] is often greater than that recorded in the potentials of the adjacent organ fluids (e.g., for an 80 or 90 dB SPL stimulus at the BF with a 30 ms steady-state time, the average end DC of the support cells deep into the organ is 2 times that of the adjacent organ fluids, n = 42). In contrast, the end DC for the responses of peripheral support cells--the Hensen's cells--generally equals, or is smaller than, the extracellular-fluid counterpart (for an 80 or 90 dB SPL stimulus, the average end DC of Hensen's cells is 0.9 times that of the nearby, outer-tunnel fluids, n = 29). Thus a difference exists across support-cell type with respect to support-cell end DC vis-a-vis that of the adjacent organ of Corti fluids. 5. A slowly increasing depolarization is often present in moderate and high-level support-cell responses. It is not normally present in IHC or OHC responses. Magnitude of the slowly increasing depolarization, the slow DC, is dependent on stimulus duration and stimulus level.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.1990.64.2.617