Murine and Human b Locus Pigmentation Genes Encode a Glycoprotein (gp75) with Catalase Activity

Melanogenesis is regulated in large part by tyrosinase (monophenol monooxygenase; monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1), and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in muri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1990-06, Vol.87 (12), p.4809-4813
Hauptverfasser: Halaban, Ruth, Moellmann, Gisela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melanogenesis is regulated in large part by tyrosinase (monophenol monooxygenase; monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1), and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmented (Blt/Blt) coat versus the wild-type black (B/B). We show that the b locus codes for a glycoprotein with the activity of a catalase (hydrogen-peroxide:hydrogen:peroxide oxidoreductase, EC 1.11.1.6) (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, we conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. Our studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the Bltmutation renders the protein susceptible to rapid proteolytic degradation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.12.4809