Impact of interseed attenuation and tissue composition for permanent prostate implants

The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with I 125 permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study foc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2006-03, Vol.33 (3), p.595-604
Hauptverfasser: Carrier, Jean-François, Beaulieu, Luc, Therriault-Proulx, François, Roy, René
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 604
container_issue 3
container_start_page 595
container_title Medical physics (Lancaster)
container_volume 33
creator Carrier, Jean-François
Beaulieu, Luc
Therriault-Proulx, François
Roy, René
description The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with I 125 permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density ( 42 0.6 mCi seeds in a 26 cm 3 prostate) suffers a 1.2% drop in the CTV D 90 value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3 mCi seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the D 90 parameter. Overall, the effect on D 90 is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.
doi_str_mv 10.1118/1.2168295
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16878563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP8295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpSDYfh_6BIuipASeSLFnWoYew5AsS0kOTq5DlEVVZS8bSpuy_jxObJBA2p4Hhed-ZeQehb5ScUErrU3rCaFUzJb6gBeOyLDgj6itaEKJ4wTgRe2g_pX-EkKoUZBftjbSsRVUu0MN11xubcXTYhwxDAmixyRnC2mQfAzahxdmntAZsY9fH5F_aLg64h6EzAULG_RBTNhmw7_qVCTkdoh1nVgmO5nqA7i_O_yyvipu7y-vl2U1hRalEAY1yjXAWmrIBI5WirKItaSXnUAmqOJe85JWoOCtpI1pQtXVADTOSt-BkeYB-TL7jfK-T9RnsXxtDAJs1I1IKUvOR-jlRdtwzDeB0P_jODBtNiX5OUFM9Jziy3ye2XzcdtG_kHNkIFBPw369gs91J3_6eDX9N_PN2L5lu10zP0NHp12eM-uNt-sc4vJvXt-4z-OOpT9ilqxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of interseed attenuation and tissue composition for permanent prostate implants</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carrier, Jean-François ; Beaulieu, Luc ; Therriault-Proulx, François ; Roy, René</creator><creatorcontrib>Carrier, Jean-François ; Beaulieu, Luc ; Therriault-Proulx, François ; Roy, René</creatorcontrib><description>The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with I 125 permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density ( 42 0.6 mCi seeds in a 26 cm 3 prostate) suffers a 1.2% drop in the CTV D 90 value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3 mCi seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the D 90 parameter. Overall, the effect on D 90 is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2168295</identifier><identifier>PMID: 16878563</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Anatomy ; Anisotropy ; ATTENUATION ; biological organs ; biological tissues ; Biomaterials ; BRACHYTHERAPY ; Brachytherapy - adverse effects ; Brachytherapy - methods ; Computed tomography ; Computer Simulation ; DOSIMETRY ; Gamma ray effects ; GEANT4 ; Humans ; ICRP ; iodine ; IODINE 125 ; Iodine Radioisotopes - therapeutic use ; Male ; Medical treatment planning ; Models, Biological ; Monte Carlo ; MONTE CARLO METHOD ; Monte Carlo methods ; PATIENTS ; Photons ; PROSTATE ; prostate brachytherapy ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - radiotherapy ; Prostheses and Implants ; prosthetics ; RADIATION DOSES ; RADIATION PROTECTION ; RADIATION SOURCE IMPLANTS ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; REFERENCE MAN ; Relative Biological Effectiveness ; Therapeutic applications, including brachytherapy ; Tissues ; Treatment strategy ; Water - chemistry</subject><ispartof>Medical physics (Lancaster), 2006-03, Vol.33 (3), p.595-604</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2006 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</citedby><cites>FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2168295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2168295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16878563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20775084$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrier, Jean-François</creatorcontrib><creatorcontrib>Beaulieu, Luc</creatorcontrib><creatorcontrib>Therriault-Proulx, François</creatorcontrib><creatorcontrib>Roy, René</creatorcontrib><title>Impact of interseed attenuation and tissue composition for permanent prostate implants</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with I 125 permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density ( 42 0.6 mCi seeds in a 26 cm 3 prostate) suffers a 1.2% drop in the CTV D 90 value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3 mCi seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the D 90 parameter. Overall, the effect on D 90 is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.</description><subject>Anatomy</subject><subject>Anisotropy</subject><subject>ATTENUATION</subject><subject>biological organs</subject><subject>biological tissues</subject><subject>Biomaterials</subject><subject>BRACHYTHERAPY</subject><subject>Brachytherapy - adverse effects</subject><subject>Brachytherapy - methods</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>DOSIMETRY</subject><subject>Gamma ray effects</subject><subject>GEANT4</subject><subject>Humans</subject><subject>ICRP</subject><subject>iodine</subject><subject>IODINE 125</subject><subject>Iodine Radioisotopes - therapeutic use</subject><subject>Male</subject><subject>Medical treatment planning</subject><subject>Models, Biological</subject><subject>Monte Carlo</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>PATIENTS</subject><subject>Photons</subject><subject>PROSTATE</subject><subject>prostate brachytherapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - radiotherapy</subject><subject>Prostheses and Implants</subject><subject>prosthetics</subject><subject>RADIATION DOSES</subject><subject>RADIATION PROTECTION</subject><subject>RADIATION SOURCE IMPLANTS</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>REFERENCE MAN</subject><subject>Relative Biological Effectiveness</subject><subject>Therapeutic applications, including brachytherapy</subject><subject>Tissues</subject><subject>Treatment strategy</subject><subject>Water - chemistry</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVpSDYfh_6BIuipASeSLFnWoYew5AsS0kOTq5DlEVVZS8bSpuy_jxObJBA2p4Hhed-ZeQehb5ScUErrU3rCaFUzJb6gBeOyLDgj6itaEKJ4wTgRe2g_pX-EkKoUZBftjbSsRVUu0MN11xubcXTYhwxDAmixyRnC2mQfAzahxdmntAZsY9fH5F_aLg64h6EzAULG_RBTNhmw7_qVCTkdoh1nVgmO5nqA7i_O_yyvipu7y-vl2U1hRalEAY1yjXAWmrIBI5WirKItaSXnUAmqOJe85JWoOCtpI1pQtXVADTOSt-BkeYB-TL7jfK-T9RnsXxtDAJs1I1IKUvOR-jlRdtwzDeB0P_jODBtNiX5OUFM9Jziy3ye2XzcdtG_kHNkIFBPw369gs91J3_6eDX9N_PN2L5lu10zP0NHp12eM-uNt-sc4vJvXt-4z-OOpT9ilqxA</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Carrier, Jean-François</creator><creator>Beaulieu, Luc</creator><creator>Therriault-Proulx, François</creator><creator>Roy, René</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200603</creationdate><title>Impact of interseed attenuation and tissue composition for permanent prostate implants</title><author>Carrier, Jean-François ; Beaulieu, Luc ; Therriault-Proulx, François ; Roy, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anatomy</topic><topic>Anisotropy</topic><topic>ATTENUATION</topic><topic>biological organs</topic><topic>biological tissues</topic><topic>Biomaterials</topic><topic>BRACHYTHERAPY</topic><topic>Brachytherapy - adverse effects</topic><topic>Brachytherapy - methods</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>DOSIMETRY</topic><topic>Gamma ray effects</topic><topic>GEANT4</topic><topic>Humans</topic><topic>ICRP</topic><topic>iodine</topic><topic>IODINE 125</topic><topic>Iodine Radioisotopes - therapeutic use</topic><topic>Male</topic><topic>Medical treatment planning</topic><topic>Models, Biological</topic><topic>Monte Carlo</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>PATIENTS</topic><topic>Photons</topic><topic>PROSTATE</topic><topic>prostate brachytherapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - radiotherapy</topic><topic>Prostheses and Implants</topic><topic>prosthetics</topic><topic>RADIATION DOSES</topic><topic>RADIATION PROTECTION</topic><topic>RADIATION SOURCE IMPLANTS</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>REFERENCE MAN</topic><topic>Relative Biological Effectiveness</topic><topic>Therapeutic applications, including brachytherapy</topic><topic>Tissues</topic><topic>Treatment strategy</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrier, Jean-François</creatorcontrib><creatorcontrib>Beaulieu, Luc</creatorcontrib><creatorcontrib>Therriault-Proulx, François</creatorcontrib><creatorcontrib>Roy, René</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrier, Jean-François</au><au>Beaulieu, Luc</au><au>Therriault-Proulx, François</au><au>Roy, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of interseed attenuation and tissue composition for permanent prostate implants</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2006-03</date><risdate>2006</risdate><volume>33</volume><issue>3</issue><spage>595</spage><epage>604</epage><pages>595-604</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with I 125 permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density ( 42 0.6 mCi seeds in a 26 cm 3 prostate) suffers a 1.2% drop in the CTV D 90 value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3 mCi seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the D 90 parameter. Overall, the effect on D 90 is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16878563</pmid><doi>10.1118/1.2168295</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2006-03, Vol.33 (3), p.595-604
issn 0094-2405
2473-4209
language eng
recordid cdi_pubmed_primary_16878563
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anatomy
Anisotropy
ATTENUATION
biological organs
biological tissues
Biomaterials
BRACHYTHERAPY
Brachytherapy - adverse effects
Brachytherapy - methods
Computed tomography
Computer Simulation
DOSIMETRY
Gamma ray effects
GEANT4
Humans
ICRP
iodine
IODINE 125
Iodine Radioisotopes - therapeutic use
Male
Medical treatment planning
Models, Biological
Monte Carlo
MONTE CARLO METHOD
Monte Carlo methods
PATIENTS
Photons
PROSTATE
prostate brachytherapy
Prostatic Neoplasms - pathology
Prostatic Neoplasms - radiotherapy
Prostheses and Implants
prosthetics
RADIATION DOSES
RADIATION PROTECTION
RADIATION SOURCE IMPLANTS
RADIOLOGY AND NUCLEAR MEDICINE
Radiometry - methods
REFERENCE MAN
Relative Biological Effectiveness
Therapeutic applications, including brachytherapy
Tissues
Treatment strategy
Water - chemistry
title Impact of interseed attenuation and tissue composition for permanent prostate implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20interseed%20attenuation%20and%20tissue%20composition%20for%20permanent%20prostate%20implants&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Carrier,%20Jean-Fran%C3%A7ois&rft.date=2006-03&rft.volume=33&rft.issue=3&rft.spage=595&rft.epage=604&rft.pages=595-604&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2168295&rft_dat=%3Cwiley_pubme%3EMP8295%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16878563&rfr_iscdi=true