Impact of interseed attenuation and tissue composition for permanent prostate implants
The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with I 125 permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study foc...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2006-03, Vol.33 (3), p.595-604 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | 3 |
container_start_page | 595 |
container_title | Medical physics (Lancaster) |
container_volume | 33 |
creator | Carrier, Jean-François Beaulieu, Luc Therriault-Proulx, François Roy, René |
description | The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with
I
125
permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density (
42
0.6
mCi
seeds in a
26
cm
3
prostate) suffers a 1.2% drop in the CTV
D
90
value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3
mCi
seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the
D
90
parameter. Overall, the effect on
D
90
is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose. |
doi_str_mv | 10.1118/1.2168295 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16878563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP8295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpSDYfh_6BIuipASeSLFnWoYew5AsS0kOTq5DlEVVZS8bSpuy_jxObJBA2p4Hhed-ZeQehb5ScUErrU3rCaFUzJb6gBeOyLDgj6itaEKJ4wTgRe2g_pX-EkKoUZBftjbSsRVUu0MN11xubcXTYhwxDAmixyRnC2mQfAzahxdmntAZsY9fH5F_aLg64h6EzAULG_RBTNhmw7_qVCTkdoh1nVgmO5nqA7i_O_yyvipu7y-vl2U1hRalEAY1yjXAWmrIBI5WirKItaSXnUAmqOJe85JWoOCtpI1pQtXVADTOSt-BkeYB-TL7jfK-T9RnsXxtDAJs1I1IKUvOR-jlRdtwzDeB0P_jODBtNiX5OUFM9Jziy3ye2XzcdtG_kHNkIFBPw369gs91J3_6eDX9N_PN2L5lu10zP0NHp12eM-uNt-sc4vJvXt-4z-OOpT9ilqxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of interseed attenuation and tissue composition for permanent prostate implants</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carrier, Jean-François ; Beaulieu, Luc ; Therriault-Proulx, François ; Roy, René</creator><creatorcontrib>Carrier, Jean-François ; Beaulieu, Luc ; Therriault-Proulx, François ; Roy, René</creatorcontrib><description>The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with
I
125
permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density (
42
0.6
mCi
seeds in a
26
cm
3
prostate) suffers a 1.2% drop in the CTV
D
90
value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3
mCi
seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the
D
90
parameter. Overall, the effect on
D
90
is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2168295</identifier><identifier>PMID: 16878563</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Anatomy ; Anisotropy ; ATTENUATION ; biological organs ; biological tissues ; Biomaterials ; BRACHYTHERAPY ; Brachytherapy - adverse effects ; Brachytherapy - methods ; Computed tomography ; Computer Simulation ; DOSIMETRY ; Gamma ray effects ; GEANT4 ; Humans ; ICRP ; iodine ; IODINE 125 ; Iodine Radioisotopes - therapeutic use ; Male ; Medical treatment planning ; Models, Biological ; Monte Carlo ; MONTE CARLO METHOD ; Monte Carlo methods ; PATIENTS ; Photons ; PROSTATE ; prostate brachytherapy ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - radiotherapy ; Prostheses and Implants ; prosthetics ; RADIATION DOSES ; RADIATION PROTECTION ; RADIATION SOURCE IMPLANTS ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; REFERENCE MAN ; Relative Biological Effectiveness ; Therapeutic applications, including brachytherapy ; Tissues ; Treatment strategy ; Water - chemistry</subject><ispartof>Medical physics (Lancaster), 2006-03, Vol.33 (3), p.595-604</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2006 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</citedby><cites>FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2168295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2168295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16878563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20775084$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrier, Jean-François</creatorcontrib><creatorcontrib>Beaulieu, Luc</creatorcontrib><creatorcontrib>Therriault-Proulx, François</creatorcontrib><creatorcontrib>Roy, René</creatorcontrib><title>Impact of interseed attenuation and tissue composition for permanent prostate implants</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with
I
125
permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density (
42
0.6
mCi
seeds in a
26
cm
3
prostate) suffers a 1.2% drop in the CTV
D
90
value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3
mCi
seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the
D
90
parameter. Overall, the effect on
D
90
is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.</description><subject>Anatomy</subject><subject>Anisotropy</subject><subject>ATTENUATION</subject><subject>biological organs</subject><subject>biological tissues</subject><subject>Biomaterials</subject><subject>BRACHYTHERAPY</subject><subject>Brachytherapy - adverse effects</subject><subject>Brachytherapy - methods</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>DOSIMETRY</subject><subject>Gamma ray effects</subject><subject>GEANT4</subject><subject>Humans</subject><subject>ICRP</subject><subject>iodine</subject><subject>IODINE 125</subject><subject>Iodine Radioisotopes - therapeutic use</subject><subject>Male</subject><subject>Medical treatment planning</subject><subject>Models, Biological</subject><subject>Monte Carlo</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>PATIENTS</subject><subject>Photons</subject><subject>PROSTATE</subject><subject>prostate brachytherapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - radiotherapy</subject><subject>Prostheses and Implants</subject><subject>prosthetics</subject><subject>RADIATION DOSES</subject><subject>RADIATION PROTECTION</subject><subject>RADIATION SOURCE IMPLANTS</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>REFERENCE MAN</subject><subject>Relative Biological Effectiveness</subject><subject>Therapeutic applications, including brachytherapy</subject><subject>Tissues</subject><subject>Treatment strategy</subject><subject>Water - chemistry</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVpSDYfh_6BIuipASeSLFnWoYew5AsS0kOTq5DlEVVZS8bSpuy_jxObJBA2p4Hhed-ZeQehb5ScUErrU3rCaFUzJb6gBeOyLDgj6itaEKJ4wTgRe2g_pX-EkKoUZBftjbSsRVUu0MN11xubcXTYhwxDAmixyRnC2mQfAzahxdmntAZsY9fH5F_aLg64h6EzAULG_RBTNhmw7_qVCTkdoh1nVgmO5nqA7i_O_yyvipu7y-vl2U1hRalEAY1yjXAWmrIBI5WirKItaSXnUAmqOJe85JWoOCtpI1pQtXVADTOSt-BkeYB-TL7jfK-T9RnsXxtDAJs1I1IKUvOR-jlRdtwzDeB0P_jODBtNiX5OUFM9Jziy3ye2XzcdtG_kHNkIFBPw369gs91J3_6eDX9N_PN2L5lu10zP0NHp12eM-uNt-sc4vJvXt-4z-OOpT9ilqxA</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Carrier, Jean-François</creator><creator>Beaulieu, Luc</creator><creator>Therriault-Proulx, François</creator><creator>Roy, René</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200603</creationdate><title>Impact of interseed attenuation and tissue composition for permanent prostate implants</title><author>Carrier, Jean-François ; Beaulieu, Luc ; Therriault-Proulx, François ; Roy, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5395-eb9fb5fceb3bea7991261d0d744e65194474346564231b5de98cfe1a2a74def73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anatomy</topic><topic>Anisotropy</topic><topic>ATTENUATION</topic><topic>biological organs</topic><topic>biological tissues</topic><topic>Biomaterials</topic><topic>BRACHYTHERAPY</topic><topic>Brachytherapy - adverse effects</topic><topic>Brachytherapy - methods</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>DOSIMETRY</topic><topic>Gamma ray effects</topic><topic>GEANT4</topic><topic>Humans</topic><topic>ICRP</topic><topic>iodine</topic><topic>IODINE 125</topic><topic>Iodine Radioisotopes - therapeutic use</topic><topic>Male</topic><topic>Medical treatment planning</topic><topic>Models, Biological</topic><topic>Monte Carlo</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>PATIENTS</topic><topic>Photons</topic><topic>PROSTATE</topic><topic>prostate brachytherapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - radiotherapy</topic><topic>Prostheses and Implants</topic><topic>prosthetics</topic><topic>RADIATION DOSES</topic><topic>RADIATION PROTECTION</topic><topic>RADIATION SOURCE IMPLANTS</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>REFERENCE MAN</topic><topic>Relative Biological Effectiveness</topic><topic>Therapeutic applications, including brachytherapy</topic><topic>Tissues</topic><topic>Treatment strategy</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrier, Jean-François</creatorcontrib><creatorcontrib>Beaulieu, Luc</creatorcontrib><creatorcontrib>Therriault-Proulx, François</creatorcontrib><creatorcontrib>Roy, René</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrier, Jean-François</au><au>Beaulieu, Luc</au><au>Therriault-Proulx, François</au><au>Roy, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of interseed attenuation and tissue composition for permanent prostate implants</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2006-03</date><risdate>2006</risdate><volume>33</volume><issue>3</issue><spage>595</spage><epage>604</epage><pages>595-604</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The purpose is to evaluate the impact of interseed attenuation and prostate composition for prostate treatment plans with
I
125
permanent seed implants using the Monte Carlo (MC) method. The effect of seed density (number of seeds per prostate unit volume) is specifically investigated. The study focuses on treatment plans that were generated for clinical cases. For each plan, four different dose calculation techniques are compared: TG-43 based calculation, superposition MC, full MC with water prostate, and full MC with realistic prostate tissue. The prostate tissue description is from the ICRP report 23 (W. S. Snyer, M. J. Cook, E. S. Nasset, L. R. Karkhausen, G. P. Howells, and I. H. Tipton, “Report of the task group on reference man,” Technical Report 23, International Commission on Radiological Protection, 1974). According to the comparisons, the seed density has an influence on interseed attenuation. A plan with a typical low seed density (
42
0.6
mCi
seeds in a
26
cm
3
prostate) suffers a 1.2% drop in the CTV
D
90
value due to interseed attenuation. A drop of 3.0% is calculated for a higher seed density (75 0.3
mCi
seeds, same prostate). The influence of the prostate composition is similar for all seed densities and prostate sizes. The difference between MC simulations in water and MC simulations in prostate tissue is between 4.4% and 4.8% for the
D
90
parameter. Overall, the effect on
D
90
is ranging from 5.8% to 12.8% when comparing clinically approved TG-43 and MC simulations in prostate tissue. The impact varies from one patient to the other and depends on the prostate size and the number of seeds. This effect can reach a significant level when reporting correlations between clinical effect and deposited dose.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16878563</pmid><doi>10.1118/1.2168295</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2006-03, Vol.33 (3), p.595-604 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_pubmed_primary_16878563 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anatomy Anisotropy ATTENUATION biological organs biological tissues Biomaterials BRACHYTHERAPY Brachytherapy - adverse effects Brachytherapy - methods Computed tomography Computer Simulation DOSIMETRY Gamma ray effects GEANT4 Humans ICRP iodine IODINE 125 Iodine Radioisotopes - therapeutic use Male Medical treatment planning Models, Biological Monte Carlo MONTE CARLO METHOD Monte Carlo methods PATIENTS Photons PROSTATE prostate brachytherapy Prostatic Neoplasms - pathology Prostatic Neoplasms - radiotherapy Prostheses and Implants prosthetics RADIATION DOSES RADIATION PROTECTION RADIATION SOURCE IMPLANTS RADIOLOGY AND NUCLEAR MEDICINE Radiometry - methods REFERENCE MAN Relative Biological Effectiveness Therapeutic applications, including brachytherapy Tissues Treatment strategy Water - chemistry |
title | Impact of interseed attenuation and tissue composition for permanent prostate implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20interseed%20attenuation%20and%20tissue%20composition%20for%20permanent%20prostate%20implants&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Carrier,%20Jean-Fran%C3%A7ois&rft.date=2006-03&rft.volume=33&rft.issue=3&rft.spage=595&rft.epage=604&rft.pages=595-604&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2168295&rft_dat=%3Cwiley_pubme%3EMP8295%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16878563&rfr_iscdi=true |