Distinct Signals Regulate AS160 Phosphorylation in Response to Insulin, AICAR, and Contraction in Mouse Skeletal Muscle

Distinct Signals Regulate AS160 Phosphorylation in Response to Insulin, AICAR, and Contraction in Mouse Skeletal Muscle Henning F. Kramer 1 , Carol A. Witczak 1 , Nobuharu Fujii 1 , Niels Jessen 1 , Eric B. Taylor 1 , David E. Arnolds 1 , Kei Sakamoto 1 , Michael F. Hirshman 1 and Laurie J. Goodyear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2006-07, Vol.55 (7), p.2067-2076
Hauptverfasser: Kramer, Henning F, Witczak, Carol A, Fujii, Nobuharu, Jessen, Niels, Taylor, Eric B, Arnolds, David E, Sakamoto, Kei, Hirshman, Michael F, Goodyear, Laurie J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distinct Signals Regulate AS160 Phosphorylation in Response to Insulin, AICAR, and Contraction in Mouse Skeletal Muscle Henning F. Kramer 1 , Carol A. Witczak 1 , Nobuharu Fujii 1 , Niels Jessen 1 , Eric B. Taylor 1 , David E. Arnolds 1 , Kei Sakamoto 1 , Michael F. Hirshman 1 and Laurie J. Goodyear 1 2 1 Metabolism Research Division, Joslin Diabetes Center, Boston, Massachusetts 2 Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts Address correspondence and reprint requests to Laurie J. Goodyear, Section Head, Metabolism, Joslin Diabetes Center, One Joslin Pl., Boston, MA 02215. E-mail: laurie.goodyear{at}joslin.harvard.edu Abstract Insulin and contraction increase GLUT4 translocation in skeletal muscle via distinct signaling mechanisms. Akt substrate of 160 kDa (AS160) mediates insulin-stimulated GLUT4 translocation in L6 myotubes, presumably through activation of Akt. Using in vivo, in vitro, and in situ methods, insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR all increased AS160 phosphorylation in mouse skeletal muscle. Insulin-stimulated AS160 phosphorylation was fully blunted by wortmannin in vitro and in Akt2 knockout (KO) mice in vivo. In contrast, contraction-stimulated AS160 phosphorylation was only partially decreased by wortmannin and unaffected in Akt2 KO mice, suggesting additional regulatory mechanisms. To determine if AMPK mediates AS160 signaling, we used AMPK α2-inactive (α2i) transgenic mice. AICAR-stimulated AS160 phosphorylation was fully inhibited, whereas contraction-stimulated AS160 phosphorylation was partially reduced in the AMPK α2i transgenic mice. Combined AMPK α2 and Akt inhibition by wortmannin treatment of AMPK α2 transgenic mice did not fully ablate contraction-stimulated AS160 phosphorylation. Maximal insulin, together with either AICAR or contraction, increased AS160 phosphorylation in an additive manner. In conclusion, AS160 may be a point of convergence linking insulin, contraction, and AICAR signaling. While Akt and AMPK α2 activities are essential for AS160 phosphorylation by insulin and AICAR, respectively, neither kinase is indispensable for the entire effects of contraction on AS160 phosphorylation. α2i, α2-inactive AMPK, AMP-activated protein kinase aPKC, atypical protein kinase C AS160, Akt substrate of 160 kDa EDL, extensor digitorum longus GAP, GTPase-activating protein PAS, phospho-Akt substrate PI3-K, phosphatidylinositol 3-kinase Footnotes The cos
ISSN:0012-1797
1939-327X
DOI:10.2337/db06-0150