Exponential synchronization of a class of neural networks with time-varying delays

This paper aims to present a synchronization scheme for a class of delayed neural networks, which covers the Hopfield neural networks and cellular neural networks with time-varying delays. A feedback control gain matrix is derived to achieve the exponential synchronization of the drive-response stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2006-02, Vol.36 (1), p.209-215
Hauptverfasser: Cheng, Chao-Jung, Liao, Teh-Lu, Yan, Jun-Juh, Hwang, Chi-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to present a synchronization scheme for a class of delayed neural networks, which covers the Hopfield neural networks and cellular neural networks with time-varying delays. A feedback control gain matrix is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory, and its exponential synchronization condition can be verified if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis. This condition can avoid solving an algebraic Riccati equation. Both the cellular neural networks and Hopfield neural networks with time-varying delays are given as examples for illustration.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2005.856144