Exponential synchronization of a class of neural networks with time-varying delays
This paper aims to present a synchronization scheme for a class of delayed neural networks, which covers the Hopfield neural networks and cellular neural networks with time-varying delays. A feedback control gain matrix is derived to achieve the exponential synchronization of the drive-response stru...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2006-02, Vol.36 (1), p.209-215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to present a synchronization scheme for a class of delayed neural networks, which covers the Hopfield neural networks and cellular neural networks with time-varying delays. A feedback control gain matrix is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory, and its exponential synchronization condition can be verified if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis. This condition can avoid solving an algebraic Riccati equation. Both the cellular neural networks and Hopfield neural networks with time-varying delays are given as examples for illustration. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2005.856144 |