S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000)

The S1 genes of isolates of avian coronavirus infectious bronchitis virus (IBV) from commercial chickens in the US and Israel (20 isolates from each country) were studied using reverse transcription-polymerase chain reaction restriction fragment length polymorphism and sequencing. Partial sequences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Avian pathology 2005-06, Vol.34 (3), p.194-203
Hauptverfasser: Gelb Jr, J., Weisman, Y., Ladman, B. S., Meir, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The S1 genes of isolates of avian coronavirus infectious bronchitis virus (IBV) from commercial chickens in the US and Israel (20 isolates from each country) were studied using reverse transcription-polymerase chain reaction restriction fragment length polymorphism and sequencing. Partial sequences spanning the amino terminus region of S1 from amino acid residues 48 to 219, based on the Beaudette strain, were used for analysis. Phylogenetic clustering and high-sequence identity values were used to identify isolates that appeared to be derived from live IBV vaccines used in the two countries. Novel variant strains, unrelated by S1 sequencing and restriction fragment length polymorphism analyses to reference and vaccine strains, were also identified. Based on S1 sequence identity to available vaccines, the potential to use vaccination to control IBV infections was evaluated. Vaccination with commercial live strains Massachusetts (Mass), Arkansas (Ark) or DE/072/92, generally produced immunity against vaccine-related field isolates displaying high S1 sequence similarities (≥90%) to the respective vaccine strains. Immunization with a bivalent vaccine containing the Mass and Ark strains provided good cross-protection, averaging 81% against challenge with five variant isolates from the US having amino acid identity values ranging from 62 to 69% to Mass and from 68 to 83% to Ark, respectively. In contrast, the H120 vaccine strain induced low levels of protection, ranging from 25 to 58% against variant field isolates from Israel with amino acid identity values from 65 to 67%.
ISSN:0307-9457
1465-3338
DOI:10.1080/03079450500096539