Enhancement of Asynchronous and Train-Evoked Exocytosis in Bovine Adrenal Chromaffin Cells Infected With a Replication Deficient Adenovirus

1 Department of Physiology, 2 Program in Neuroscience, 3 Department of Neurology, 4 Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia Submitted 31 March 2005; accepted in final form 13 July 2005 Bovine adrenal chromaffin cells share many characteristics wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2005-11, Vol.94 (5), p.3278-3291
Hauptverfasser: Thiagarajan, Ramachandran, Wilhelm, Jennifer, Tewolde, Teclemichael, Li, Yingjie, Rich, Mark M, Engisch, Kathrin L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1 Department of Physiology, 2 Program in Neuroscience, 3 Department of Neurology, 4 Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia Submitted 31 March 2005; accepted in final form 13 July 2005 Bovine adrenal chromaffin cells share many characteristics with neurons and are often used as a simple model system to study ion channels and neurotransmitter release. We infected bovine adrenal chromaffin cells with a replication deficient adenovirus that induces expression of the common reporters -galactosidase and Green Fluorescent Protein via a bicistronic sequence. In perforated-patch recordings performed 48-h postinfection, peak calcium currents were reduced 32%, primarily due to loss of -conotoxin-GVIA-sensitive current. In contrast, sodium currents were increased 17%. Exocytosis, detected as an increase in membrane capacitance immediately after a single step depolarization, was reduced in proportion to the decrease in calcium influx. However, capacitance continued to increase for seconds after the depolarization. The amplitude of this poststimulus drift, or asynchronous exocytosis, was approximately three times that which occurred in a small fraction of control cells. Exocytosis evoked by repetitive stimulation with a train of brief depolarizations was increased 50%. Intracellular calcium levels measured during and after stimulation were lower, not higher, in adenovirus-infected cells. Electroporated cells showed reduced calcium currents but no enhancement of exocytosis. Cells infected with UV-irradiated virus showed reduced calcium currents and enhancement of exocytosis, but the changes were smaller than those caused by intact virus. Our results are consistent with the idea that adenovirus capsid and adenoviral DNA contribute to a Ca 2+ influx- and [Ca 2+ ] i -independent enhancement of exocytosis in bovine chromaffin cells. Present address and address for reprint requests and other correspondence: K. L. Engisch, Dept. of Neuroscience, Cell Biology, and Physiology, Wright State University, 014 M and M Bldg, 3640 Colonel Glenn Hwy., Dayton, OH 45435 (E-mail: kathrin.engisch{at}wright.edu )
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00336.2005