Rational Combinatorial Design of Pore-Forming β-Sheet Peptides
Exogenous polypeptides that self-assemble on biological membranes into pores are abundant and structurally diverse, functioning as transporters, toxins, ion channels, and antibiotics. A means for designing novel pore-forming sequences would unlock new opportunities for the development and engineerin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-07, Vol.102 (30), p.10511-10515 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exogenous polypeptides that self-assemble on biological membranes into pores are abundant and structurally diverse, functioning as transporters, toxins, ion channels, and antibiotics. A means for designing novel pore-forming sequences would unlock new opportunities for the development and engineering of protein function in membranes. Toward this goal, we designed a 9,604-member rational combinatorial peptide library based on the structural principles of known membrane-spanning β-sheets. When the library was screened under stringent conditions for sequences with pore-forming activity, a single active motif was found, which is characterized by aromatic residues at the lipid-exposed interfacial positions and basic residues in the pore-lining portion of the sequence. Peptides with this motif assembled on bilayer membranes into β-sheets and formed transient peptide/lipid pores of ≈1-nm diameter. The mechanism of action is very similar to that of natural, pore-forming peptides. These methods provide a powerful means for selecting and engineering novel pore-forming sequences and will open prospects for designing peptide antibiotics, biosensors, and new membrane protein structures. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0502013102 |