Evolution of Highly Active Enzymes by Homology-Independent Recombination

The theta-class GST enzymes hGSTT1-1 (human GSTθ-1-1) and rGSTT2-2 (rat GSTθ-2-2) share 54.3% amino acid identity and exhibit different substrate specificities. Homology-independent techniques [incremental truncation for the creation of hybrid enzymes (ITCHY) and SCRATCHY] and low-homology technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-07, Vol.102 (29), p.10082-10087
Hauptverfasser: Griswold, Karl E., Kawarasaki, Yasuaki, Ghoneim, Nada, Benkovic, Stephen J., Iverson, Brent L., Georgiou, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theta-class GST enzymes hGSTT1-1 (human GSTθ-1-1) and rGSTT2-2 (rat GSTθ-2-2) share 54.3% amino acid identity and exhibit different substrate specificities. Homology-independent techniques [incremental truncation for the creation of hybrid enzymes (ITCHY) and SCRATCHY] and low-homology techniques (recombination-dependent exponential amplification PCR) were used to create libraries of chimeric enzymes containing crossovers (C/Os) at positions not accessible by DNA family shuffling. High-throughput flow cytometric screening using the fluorogenic rGSTT2-2-specific substrate 7-amino-4-chloromethyl coumarin led to the isolation of active variants with either one or two C/Os. One of these enzymes, SCR23 (83% identity to hGSTT1-1), was encoded by a gene that exchanged helices 4 and 5 of hGSTT1-1 with the corresponding sequence from rGSTT2-2. Compared with either parent, this variant was found to have an improved kcatwith the selection substrate and also exhibited activity for the conjugation of glutathione to ethacrynic acid, a compound that is not recognized by either parental enzyme. These results highlight the power of combinatorial homology-independent and low-homology recombination methods for the generation of unique, highly active enzymes and also suggest a possible means of enzyme "humanization."
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0504556102