TGF-beta induced hyaluronan synthesis in orbital fibroblasts involves protein kinase C betaII activation in vitro
Graves' ophthalmopathy is accompanied by hyaluronan (HA) accumulation in the orbital space and infiltration of immunocompetent cells and cytokines, including IFN-gamma, IL-1beta, and TGF-beta. We examined the signal transduction pathways by which TGF-beta induces HA synthesis in normal orbital...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2005-05, Vol.95 (2), p.256 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graves' ophthalmopathy is accompanied by hyaluronan (HA) accumulation in the orbital space and infiltration of immunocompetent cells and cytokines, including IFN-gamma, IL-1beta, and TGF-beta. We examined the signal transduction pathways by which TGF-beta induces HA synthesis in normal orbital fibroblasts, orbital fibroblasts from patients with Graves' ophthalmopathy, and abdominal fibroblasts. Calphostin C inhibited the stimulation of HA synthesis by TGF-beta. Phorbol 12-myristate 13-acetate (PMA) activation of PKC stimulated HA production. The effects of TGF-beta and PMA were not synergistic. Stimulation by TGF-beta and PMA were dependent on protein synthesis and their effects were inhibited by cycloheximide. Since TGF-beta-induced HA synthesis was inhibited by BAPTA or by PKC inhibitors, a calcium-dependent PKC was most likely involved. The PKA inhibitor H-89 enhanced TGF-beta- and PMA-induced HA synthesis, thus showing that communication between the PKA and PKC pathways was evident. TGF-beta stimulated the translocation of PKCbetaII to the cell membrane. PKCbetaII, a key enzyme in the regulation of HA synthesis by TGF-beta, might be an appropriate target for therapeutic compounds to be used to treat Graves' ophthalmopathy accompanied by inflammation. |
---|---|
ISSN: | 0730-2312 |