Microcomputed Tomography Colonography for Polyp Detection in an in vivo Mouse Tumor Model
This study was initiated to evaluate the efficacy of negative contrast-enhanced microcomputed tomography (microCT) colonography for the noninvasive detection of colonic tumors in living mice. After colonic preparation, 20 anesthetized congenic mice were scanned with high-resolution microCT. Images w...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-03, Vol.102 (9), p.3419-3422 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study was initiated to evaluate the efficacy of negative contrast-enhanced microcomputed tomography (microCT) colonography for the noninvasive detection of colonic tumors in living mice. After colonic preparation, 20 anesthetized congenic mice were scanned with high-resolution microCT. Images were displayed by using commercial visualization software and interpreted by two gastrointestinal radiologists, who were unaware of tumor prevalence and findings at gross pathology. Two-dimensional multiplanar images were assessed by using a five-point scale to distinguish colonic tumors (polyps) from fecal pellets (5 = definitely a tumor, 4 = probably a tumor, 3 = indeterminate, 2 = probably not a tumor, 1 = definitely not a tumor). Gross pathologic evaluation of excised mouse colons served as the reference standard. Data analysis included dichotomizing results, with 1-2 indicating no tumor and 3-5 indicating tumor and also receiver operator characteristic curve analysis with area under the curve for threshold-independent assessment. A total of 41 colonic polyps in 18 of the 20 mice were identified at gross examination on necropsy, of which 30 measured 2-5 mm and 11 measured 2 mm was 93.3% (56/60). The pooled per-mouse sensitivity for polyps >2 mm was 97.1% (33/34). Pooled specificity for distinguishing fecal pellets from tumor was 98.5% (65/66). The combined area under the curve from receiver operator characteristic curve analysis was 0.810 ± 0.038 (95% confidence interval, 0.730-0.890). These findings indicate that accurate noninvasive longitudinal monitoring of colon tumor progression or response to various therapies is now technically feasible in live mice by using this microCT colonography method. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0409915102 |