Health Effects of Subchronic Exposure to Environmental Levels of Diesel Exhaust
Diesel exhaust is a public health concern and contributor to both ambient and occupational air pollution. As part of a general health assessment of multiple anthropogenic source emissions conducted by the National Environmental Respiratory Center (NERC), a series of health assays was conducted on ra...
Gespeichert in:
Veröffentlicht in: | Inhalation toxicology 2004-04, Vol.16 (4), p.177-193 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diesel exhaust is a public health concern and contributor to both ambient and occupational air pollution. As part of a general health assessment of multiple anthropogenic source emissions conducted by the National Environmental Respiratory Center (NERC), a series of health assays was conducted on rats and mice exposed to environmentally relevant levels of diesel exhaust. This article summarizes the study design and exposures, and reports findings on several general indicators of toxicity and carcinogenic potential. Diesel exhaust was generated from a commonly used 2000 model 5.9-L, 6-cylinder turbo diesel engine operated on a variable-load heavy-duty test cycle burning national average certification fuel. Animals were exposed to clean air (control) or four dilutions of whole emissions based on particulate matter concentration (30, 100, 300, and 1000 μg/m3). Male and female F344 rats and A/J mice were exposed by whole-body inhalation 6 h/day, 7 days/wk, for either 1 wk or 6 mo. Exposures were characterized in detail. Effects of exposure on clinical observations, body and organ weights, serum chemistry, hematology, histopathology, bronchoalveolar lavage, and serum clotting factors were mild. Significant exposure-related effects occurring in both male and female rats included decreases in serum cholesterol and clotting Factor VII and slight increases in serum gamma-glutamyl transferase. Several other responses met screening criteria for significant exposure effects but were not consistent between genders or exposure times and were not corroborated by related parameters. Carcinogenic potential as determined by micronucleated reticulocyte counts and proliferation of adenomas in A/J mice were unaffected by 6 mo of exposure. Parallel studies demonstrated effects on cardiac function and resistance to viral infection; however, the results reported here show few and only modest health hazards from subchronic or shorter exposures to realistic concentrations of contemporary diesel emissions. |
---|---|
ISSN: | 0895-8378 1091-7691 |
DOI: | 10.1080/08958370490277146 |