Structure of Vaccinia Complement Protein in Complex with Heparin and Potential Implications for Complement Regulation

Vaccinia virus complement control protein (VCP), a homolog of the regulators of the complement activation family of proteins, inhibits complement activation through mechanisms similar to human fluid-phase complement regulators factor H and C4b-binding protein. VCP has a heparin-binding activity that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (24), p.8924-8929
Hauptverfasser: Ganesh, Vannakambadi K., Smith, Scott A., Kotwal, Girish J., Krishna H. M. Murthy, Springer, Timothy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vaccinia virus complement control protein (VCP), a homolog of the regulators of the complement activation family of proteins, inhibits complement activation through mechanisms similar to human fluid-phase complement regulators factor H and C4b-binding protein. VCP has a heparin-binding activity that assists vaccinia in host interactions. Interaction with cell-surface polyanions like heparin is centrally important in the functioning of fluid-phase complement regulators and is the basis of host-target discrimination by the alternative pathway. We report the structure of VCP in complex with a heparin decasaccharide, which reveals changes in VCP that might be pertinent to complement regulation. Properties that VCP shares with fluid-phase complement regulators suggest that such conformational changes may be of relevance in the functioning of other complement regulators. Additionally, comparison of VCP-heparin interactions with potentially similar interactions in factor H might enable understanding of the structural basis of familial hemolytic uremic syndrome, attributed to mutational disruption of heparin and C3b binding by factor H.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0400744101