A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria

Fatty acid translocase (FAT)/CD36 is a long chain fatty acid transporter present at the plasma membrane, as well as in intracellular pools of skeletal muscle. In this study, we assessed the unexpected presence of FAT/CD36 in both subsarcolemmal and intermyofibril fractions of highly purified mitocho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-08, Vol.279 (35), p.36235
Hauptverfasser: Campbell, Shannon E, Tandon, Narendra N, Woldegiorgis, Gebretateos, Luiken, Joost J F P, Glatz, Jan F C, Bonen, Arend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fatty acid translocase (FAT)/CD36 is a long chain fatty acid transporter present at the plasma membrane, as well as in intracellular pools of skeletal muscle. In this study, we assessed the unexpected presence of FAT/CD36 in both subsarcolemmal and intermyofibril fractions of highly purified mitochondria. Functional assessments demonstrated that the mitochondria could bind (14)C-labeled palmitate, but could only oxidize it in the presence of carnitine. However, the addition of sulfo-N-succinimidyl oleate, a known inhibitor of FAT/CD36, resulted in an 87 and 85% reduction of palmitate oxidation in subsarcolemmal and intermyofibril fractions, respectively. Further studies revealed that maximal carnitine palmitoyltransferase I (CPTI) activity in vitro was inhibited by succinimidyl oleate (42 and 48% reduction). Interestingly, CPTI immunoprecipitated with FAT/CD36, indicating a physical pairing. Tissue differences in mitochondrial FAT/CD36 protein follow the same pattern as the capacity for fatty acid oxidation (heart >> red muscle > white muscle). Additionally, chronic stimulation of hindlimb muscles (7 days) increased FAT/CD36 expression and also resulted in a concomitant increase in mitochondrial FAT/CD36 content (46 and 47% increase). Interestingly, with acute electrical stimulation of hindlimb muscles (30 min), FAT/CD36 expression was not altered, but there was an increase in the mitochondrial content of FAT/CD36 compared with the non-stimulated control limb (35 and 37% increase). Together, these data suggest a role for FAT/CD36 in mitochondrial long chain fatty acid uptake and demonstrate system flexibility to match FAT/CD36 mitochondrial content with an increased capacity for fatty acid oxidation, possibly involving translocation of FAT/CD36 to the mitochondria.
ISSN:0021-9258
DOI:10.1074/jbc.M400566200