Pattern of Myosin Heavy Chain Isoforms in Different Fibre Types of Canine Trunk and Limb Skeletal Muscles

The aim of this study was to determine the pattern of myosin heavy chain (MHC) isoform expressions within the muscle fibres of functionally diverse trunk and limb dog muscles using monoclonal antibodies that are specific to MHC isoforms. We found that three MHC isoforms are expressed in dog skeletal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells, tissues, organs tissues, organs, 2004-01, Vol.176 (4), p.178-186
Hauptverfasser: Štrbenc, M., Smerdu, V., Županc, M., Tozon, N., Fazarinc, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to determine the pattern of myosin heavy chain (MHC) isoform expressions within the muscle fibres of functionally diverse trunk and limb dog muscles using monoclonal antibodies that are specific to MHC isoforms. We found that three MHC isoforms are expressed in dog skeletal muscles. The pattern of their expressions determined the existence of ‘pure’ fibres, i.e. I and IIa, both expressing only one MHC isoform, and ‘hybrid’ fibres, i.e. I/IIa and IIa/x, that co-expressed two MHC isoforms. While the MHCI, MHCIIa and MHCI/IIa fibres corresponded to the myofibrillar ATPase type fibres I, IIA and IIC, respectively, the hybrid MHCIIa/x fibres mostly behaved like the IIDog fibre type in myofibrillar ATPase reaction as described by Latorre et al. [J Anat 1993a;182:329–337]. No pure MHCIIx fibres were found. Though MHCIIa/x fibres were quite numerous, their presence varied not only within different muscles but within the same muscle of different animals as well. We suggest that the discrepancies in the classification of fibre types according to their myofibrillar ATPase activity between different studies of dog skeletal muscles are probably a consequence of the variable content of the MHCIIa and MHCIIx isoforms in the MHCIIa/x hybrid fibres. Estimating the histochemical metabolic profile of fibres we found that in all fast fibres oxidative-glycolytic metabolism prevailed, whereas in slow fibres oxidative metabolism was more pronounced.
ISSN:1422-6405
1422-6421
DOI:10.1159/000077034