Evidence of Tectorial Membrane Radial Motion in a Propagating Mode of a Complex Cochlear Model
Knowledge of vibratory patterns in the cochlea is crucial to understanding the stimulation of mechanosensory cells. Experiments to determine the motion of the cochlear partition and surrounding fluid are extremely challenging. As a result, the motion data are incomplete and often contradictory. The...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-04, Vol.101 (16), p.6243-6248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knowledge of vibratory patterns in the cochlea is crucial to understanding the stimulation of mechanosensory cells. Experiments to determine the motion of the cochlear partition and surrounding fluid are extremely challenging. As a result, the motion data are incomplete and often contradictory. The bending mechanism of hair bundles, thought to be related to the shear motion and endolymphatic flow between the tectorial membrane (TM) and reticular lamina (RL), is controversial. We, therefore, extend the frequency range of our previous hybrid analytical-finite-element approach to model the basal as well as apical regions of the guinea pig cochlea. We solve the fluid-solid interaction eigenvalue problem for the axial wavenumber, fluid pressure, and vibratory relative motions of the cochlear partition as a function of frequency. A simple monophasic vibratory mode of the basilar membrane is found at both ends of the cochlea. However, this simple movement is associated with a complex frequency-dependent relative deformation between the TM and the RL. We provide evidence of a radial component of TM motion that is out of phase with the RL and that facilitates the bending of outer hair cell stereocilia at appropriate frequencies at both the cochlear base and apex. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0401395101 |