Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists

A series of novel 3,4-diarylpyrazolines was synthesized and evaluated in cannabinoid (hCB(1) and hCB(2)) receptor assays. The 3,4-diarylpyrazolines elicited potent in vitro CB(1) antagonistic activities and in general exhibited high CB(1) vs CB(2) receptor subtype selectivities. Some key representat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2004-01, Vol.47 (3), p.627
Hauptverfasser: Lange, Jos H M, Coolen, Hein K A C, van Stuivenberg, Herman H, Dijksman, Jessica A R, Herremans, Arnoud H J, Ronken, Eric, Keizer, Hiskias G, Tipker, Koos, McCreary, Andrew C, Veerman, Willem, Wals, Henri C, Stork, Bob, Verveer, Peter C, den Hartog, Arnold P, de Jong, Natasja M J, Adolfs, Tiny J P, Hoogendoorn, Jan, Kruse, Chris G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of novel 3,4-diarylpyrazolines was synthesized and evaluated in cannabinoid (hCB(1) and hCB(2)) receptor assays. The 3,4-diarylpyrazolines elicited potent in vitro CB(1) antagonistic activities and in general exhibited high CB(1) vs CB(2) receptor subtype selectivities. Some key representatives showed potent pharmacological in vivo activities after oral dosing in both a CB agonist-induced blood pressure model and a CB agonist-induced hypothermia model. Chiral separation of racemic 67, followed by crystallization and an X-ray diffraction study, elucidated the absolute configuration of the eutomer 80 (SLV319) at its C(4) position as 4S. Bioanalytical studies revealed a high CNS-plasma ratio for the development candidate 80. Molecular modeling studies showed a relatively close three-dimensional structural overlap between 80 and the known CB(1) receptor antagonist rimonabant (SR141716A). Further analysis of the X-ray diffraction data of 80 revealed the presence of an intramolecular hydrogen bond that was confirmed by computational methods. Computational models and X-ray diffraction data indicated a different intramolecular hydrogen bonding pattern in the in vivo inactive compound 6. In addition, X-ray diffraction studies of 6 revealed a tighter intermolecular packing than 80, which also may contribute to its poorer absorption in vivo. Replacement of the amidine -NH(2) moiety with a -NHCH(3) group proved to be the key change for gaining oral biovailability in this series of compounds leading to the identification of 80.
ISSN:0022-2623