Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone
Radiation-induced fibrosis is an untoward effect of high dose therapeutic and inadvertent exposure to ionizing radiation. Transforming growth factor-beta (TGF-beta) has been proposed to be critical in tissue repair mechanisms resulting from radiation injury. Previously, we showed that interruption o...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-04, Vol.279 (15), p.15167 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiation-induced fibrosis is an untoward effect of high dose therapeutic and inadvertent exposure to ionizing radiation. Transforming growth factor-beta (TGF-beta) has been proposed to be critical in tissue repair mechanisms resulting from radiation injury. Previously, we showed that interruption of TGF-beta signaling by deletion of Smad3 results in resistance to radiation-induced injury. In the current study, a small molecular weight molecule, halofuginone (100 nm), is demonstrated by reporter assays to inhibit the TGF-beta signaling pathway, by Northern blotting to elevate inhibitory Smad7 expression within 15 min, and by Western blotting to inhibit formation of phospho-Smad2 and phospho-Smad3 and to decrease cytosolic and membrane TGF-beta type II receptor (TbetaRII). Attenuation of TbetaRII levels was noted as early as 1 h and down-regulation persisted for 24 h. Halofuginone blocked TGF-beta-induced delocalization of tight junction ZO-1, a marker of epidermal mesenchymal transition, in NMuMg mammary epithelial cells and suggest halofuginone may have in vivo anti-fibrogenesis characteristics. After documenting the in vitro cellular effects, halofuginone (intraperitoneum injection of 1, 2.5, or 5 microg/mouse/day) efficacy was assessed using ionizing radiation-induced (single dose, 35 or 45 Gy) hind leg contraction in C3H/Hen mice. Halofuginone treatment alone exerted no toxicity but significantly lessened radiation-induced fibrosis. The effectiveness of radiation treatment (2 gray/day for 5 days) of squamous cell carcinoma (SCC) tumors grown in C3H/Hen was not affected by halofuginone. The results detail the molecular effects of halofuginone on the TGF-beta signal pathway and show that halofuginone may lessen radiation-induced fibrosis in humans. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M309798200 |