Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens

In an effort to improve the T-DNA-mediated transformation frequency of economically important crops, we investigated the possible enhancement effect of multiple copies of virG genes contained in Agrobacterium tumefaciens strains upon the transient transformation of celery, carrot and rice tissues. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 1992-12, Vol.20 (6), p.1071-1087
Hauptverfasser: Liu, C.N. (Purdue Univ., West Lafayette, IN (USA). Dept. of Biological Sciences), Li, X.Q, Gelvin, S.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an effort to improve the T-DNA-mediated transformation frequency of economically important crops, we investigated the possible enhancement effect of multiple copies of virG genes contained in Agrobacterium tumefaciens strains upon the transient transformation of celery, carrot and rice tissues. Four days after A. tumefaciens infection, we performed histochemical beta-glucuronidase (GUS) assays to determine the frequency of transient transformation of calli from celery and carrot, and explants from rice and celery. Additional copies of octopine- and agropine-type virG genes in A. tumefaciens strains containing an agropine-type Ti-plasmid enhanced the frequency of transient transformation of celery and rice. This enhancement ranged from 25 % to five-fold, depending upon the source of the virG gene and the plant tissues inoculated. For both rice and celery, we observed a greater enhancement of transformation using A. tumefaciens strains containing additional copies of an octopine-type virG gene than with strains harboring additional copies of an agropine-type virG gene. Multiple copies of virG genes contained in A. tumefaciens strains harboring a nopaline-type Ti-plasmid had a smaller enhancing effect upon the transformation of celery tissues, and no enhancing effect upon the transformation of rice. In contrast, we obtained a three-fold increase in the transient transformation frequency of carrot calli using an A. tumefaciens strain harboring a nopaline-type Ti-plasmid and additional copies of an octopine-type virG gene. Our results show that multiple copies of virG in A. tumefaciens can greatly enhance the transient transformation frequency of celery, carrot and rice tissues, and that this enhancement is influenced by both the type of Ti-plasmid harbored by A. tumefaciens and by the infected plant species.
ISSN:0167-4412
1573-5028
DOI:10.1007/bf00028894