Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity

The aim of the present study was to investigate the mechanism of vasorelaxant responses induced by red wine polyphenolic compounds (Provinol). Rings of rat femoral artery with or without functional endothelium were set up in a myograph for isometric recording and precontracted with phenylephrine (10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2003, Vol.52 (4), p.425
Hauptverfasser: Zenebe, W, Pechánová, O, Andriantsitohaina, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present study was to investigate the mechanism of vasorelaxant responses induced by red wine polyphenolic compounds (Provinol). Rings of rat femoral artery with or without functional endothelium were set up in a myograph for isometric recording and precontracted with phenylephrine (10(-5) M). Provinol in cumulative doses (10(-9) to 10(-3) mg/ml) elicited endothelium- and dose-dependent relaxation of the artery with maximal relaxation of 56 per cent at the concentration of 10(-5) mg/ml. The relaxant responses to Provinol correlated well with the increase of NO synthase activity in the vascular tissue after administration of cumulative doses of Provinol (10(-9) to 10(-3) mg/ml). N(G)-nitro-L-arginine methylester (L-NAME, 3x10(-4) M) significantly attenuated the endothelium-dependent relaxation produced by Provinol. Administration of L-arginine (3x10(-5) M) restored the relaxation inhibited by L-NAME. The relaxant responses of Provinol were abolished in the presence of Ca(2+)-entry blocker, verapamil (10(-6) M). Administration of hydrogen peroxide (H(2)O(2)) abolished acetylcholine (10(-5) M)-induced relaxation of the rat femoral artery, while administration of Provinol (10(2) mg/ml) together with H(2)O(2) helped to maintain the acetylcholine-induced relaxation. Provinol only partially affected the concentration-response curve for the NO donor sodium nitroprusside-induced relaxation in rings without endothelium. In conclusion, Provinol elicited endothelium-dependent relaxation of rat femoral artery by the Ca(2+)-induced increase of NO synthase activity and by protecting NO from degradation.
ISSN:0862-8408
DOI:10.33549/physiolres.930333