Thymosin beta(4) reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock
Thymosin beta(4) (Tbeta(4)), a highly conserved peptide with immunomodulatory properties, is the major actin-sequestering peptide in mammalian cells. Recent studies have established that Tbeta(4) can accelerate wound healing in full thickness skin wounds and following burn injuries to the cornea. In...
Gespeichert in:
Veröffentlicht in: | International immunopharmacology 2003-08, Vol.3 (8), p.1225 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thymosin beta(4) (Tbeta(4)), a highly conserved peptide with immunomodulatory properties, is the major actin-sequestering peptide in mammalian cells. Recent studies have established that Tbeta(4) can accelerate wound healing in full thickness skin wounds and following burn injuries to the cornea. In the eye studies, the accelerated healing due to Tbeta(4) was accompanied by a significant reduction in polymorphonuclear leukocyte (PMN) infiltration and a several-fold decrease in interleukin-1beta (p< or =0.015) and 6-keto-prostaglandin F(1alpha) (6-keto-PGF1alpha, p< or =0.05). Given the recognized role of proinflammatory cytokines in septic shock and of extracellular F- and G-actin in the pathophysiology of multiple organ dysfunction, we have investigated the role of Tbeta(4) in sepsis. We report that an LD(50) dose of LPS (24 mg/kg) in rats resulted in a significant reduction of Tbeta(4) levels in the blood. Furthermore, administration of 100 microg of Tbeta(4) immediately following and at 2 and 4 h after an LD(50) dose of LPS (60 mg/kg) in mice significantly reduced mortality rates (p< or =0.024) and lowered blood levels of a number of inflammatory cytokines, eicosanoids, and other molecules that are highly elevated following endotoxin administration. In studies in human subjects given low doses of endotoxin (4 ng/kg LPS) and in patients with septic shock, we have also observed significant decreases in blood levels of Tbeta(4). The rapid disappearance of Tbeta(4) in the blood following LPS administration or during septic shock suggests that Tbeta(4) may be involved in early events leading to activation of the inflammatory cascade and ultimately the clinical sequelae of sepsis. The results of this study indicate that Tbeta(4) may have utility in the clinic in the treatment of septic shock and in syndromes associated with actin toxicities. |
---|---|
ISSN: | 1567-5769 |
DOI: | 10.1016/S1567-5769(03)00024-9 |