Dynamics of a nonlinear parametrically excited partial differential equation

We investigate a parametrically excited nonlinear Mathieu equation with damping and limited spatial dependence, using both perturbation theory and numerical integration. The perturbation results predict that, for parameters which lie near the 2:1 resonance tongue of instability corresponding to a si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 1999-03, Vol.9 (1), p.242-253
Hauptverfasser: Newman, W. I., Rand, R. H., Newman, A. L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a parametrically excited nonlinear Mathieu equation with damping and limited spatial dependence, using both perturbation theory and numerical integration. The perturbation results predict that, for parameters which lie near the 2:1 resonance tongue of instability corresponding to a single mode of shape cos  nx, the resonant mode achieves a stable periodic motion, while all the other modes are predicted to decay to zero. By numerically integrating the p.d.e. as well as a 3-mode o.d.e. truncation, the predictions of perturbation theory are shown to represent an oversimplified picture of the dynamics. In particular it is shown that steady states exist which involve many modes. The dependence of steady state behavior on parameter values and initial conditions is investigated numerically.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.166397