A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1

Pseudomonas putida strain DS1 utilizes dimethyl sulfide (DMS) as a sulfur source, and desulfurizes it via dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO(2)) and methanesulfonate (MSA). Its Tn5 mutant, Dfi74J, no longer utilized DMS, DMSO and DMSO(2), but could oxidize DMS to DMSO(2), suggesting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2003-04, Vol.149 (Pt 4), p.991
Hauptverfasser: Endoh, Takayuki, Habe, Hiroshi, Yoshida, Takako, Nojiri, Hideaki, Omori, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pseudomonas putida strain DS1 utilizes dimethyl sulfide (DMS) as a sulfur source, and desulfurizes it via dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO(2)) and methanesulfonate (MSA). Its Tn5 mutant, Dfi74J, no longer utilized DMS, DMSO and DMSO(2), but could oxidize DMS to DMSO(2), suggesting that the conversion of DMSO(2) to MSA was interrupted in the mutant. Sequencing of the Tn5 flanking region of Dfi74J demonstrated that a gene, sfnR (designated for dimethyl sulfone utilization), encoding a transcriptional regulator containing an ATP-dependent sigma(54)-association domain and a DNA-binding domain, was disrupted. sfnR is part of an operon with two other genes, sfnE and sfnC, located immediately upstream of sfnR and in the same orientation. The genes encode NADH-dependent FMN reductase (SfnE) and FMNH(2)-dependent monooxygenase (SfnC). Complementation of Dfi74J with an sfnR-expressing plasmid led to restoration of its growth on DMS, DMSO and DMSO(2). An rpoN-defective mutant of strain DS1, which lacks the sigma(54) factor, grew on MSA, but not on DMS, DMSO and DMSO(2), indicating that SfnR controls expression of gene(s) involved in DMSO(2) metabolism by interaction with sigma(54)-RNA polymerase. Northern hybridization and a reporter gene assay with an sfn-lacZ transcriptional fusion elucidated that expression of the sfnECR operon was induced under sulfate limitation and was dependent on a LysR-type transcriptional regulator, CysB. This is believed to be the first report that a sigma(54)-dependent transcriptional regulator induced under sulfate limitation is involved in sulfur assimilation.
ISSN:1350-0872
DOI:10.1099/mic.0.26031-0