Gray-Scale Photolithography Using Microfluidic Photomasks

The ability to produce three-dimensional (3D) microstructures is of increasing importance in the miniaturization of mechanical or fluidic devices, optical elements, self-assembling components, and tissue-engineering scaffolds, among others. Traditional photolithography, the most widely used process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-02, Vol.100 (4), p.1499-1504
Hauptverfasser: Chen, Chihchen, Hirdes, Danny, Folch, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to produce three-dimensional (3D) microstructures is of increasing importance in the miniaturization of mechanical or fluidic devices, optical elements, self-assembling components, and tissue-engineering scaffolds, among others. Traditional photolithography, the most widely used process for microdevice fabrication, is ill-suited for 3D fabrication, because it is based on the illumination of a photosensitive layer through a "photomask" (a transparent plate that contains opaque, unalterable solid-state features), which inevitably results in features of uniform height. We have devised photomasks in which the light-absorbing features are made of fluids. Unlike in conventional photomasks, the opacity of the photomask features can be tailored to an arbitrary number of gray-scale levels, and their spatial pattern can be reconfigured in the time scale of seconds. Here we demonstrate the inexpensive fabrication of photoresist patterns that contain features of multiple and/or smoothly varying heights. For a given microfluidic photomask, the developed photoresist pattern can be predicted as a function of the dye concentrations and photomask dimensions. For selected applications, microfluidic photomasks offer a low-cost alternative to present gray-scale photolithography approaches.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0435755100