Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF)-α or TNF-related apoptosis-inducing ligand in human cancer cell lines
Flavopiridol is one of the first cyclin-dependent kinase inhibitors undergoing clinical tests. We found that the combination treatment of flavopiridol (100-500 nM) with tumor necrosis factor (TNF)-alpha (10 ng/ml) induced a rapid and eminent apoptosis, 20 +/- 5% in 6-h treatment, in a human non-smal...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2003-02, Vol.63 (3), p.621-626 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flavopiridol is one of the first cyclin-dependent kinase inhibitors undergoing clinical tests. We found that the combination treatment of flavopiridol (100-500 nM) with tumor necrosis factor (TNF)-alpha (10 ng/ml) induced a rapid and eminent apoptosis, 20 +/- 5% in 6-h treatment, in a human non-small cell lung carcinoma cell line, A549, as determined by the increase of sub-G(1) fraction in flow cytometry. A similar observation was also made in human colon cancer cell lines, HCT-116 and HCT-15, but not in Rat2, a rat fibroblast cell line. In A549 cells, the cytotoxic synergy by the combination treatment involved the activation of caspase-1, caspase-3, and caspase-8 and generated huge chromosomal degradation. The treatment schedules were so important that only the treatments of flavopiridol concomitantly with or followed by TNF-alpha showed the pronounced apoptosis in A549 cells. Prior treatment of TNF-alpha inhibited the apoptosis by the following combination treatment, leading to little cell death. Yet, such inhibition was reversed when 100 microM of 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole, a transcription inhibitor, was present during the TNF-alpha pretreatment, suggesting that the inhibitory pretreatment of TNF-alpha might involve antiapoptotic gene expression at the transcriptional level. TNF-alpha treatment resulted in nuclear factor (NF)-kappa B activation, revealed by NF-kappa B activity reporter assay. In contrast, flavopiridol was found to inhibit the NF-kappa B-dependent gene transcription, which might give an explanation for the synergistic effect of flavopiridol with TNF-alpha. TNF-related apoptosis-inducing ligand (TRAIL; 100 ng/ml) also caused a rapid and strong cytotoxic synergy with flavopiridol. In contrast to TNF-alpha, however, all of the treatment sequences supported the synergy by TRAIL and flavopiridol. The combination of flavopiridol with TNF-alpha or TRAIL may be of use for the development in cancer therapy. |
---|---|
ISSN: | 0008-5472 1538-7445 |