Novel detection and differential utilization of a c-myc transcriptional block in colon cancer chemoprevention
Mutations in the adenomatous polyposis coli (APC) gene, which initiate almost all human colon cancers, directly target the proto-oncogene, c-myc, by elevating beta-catenin/T-cell factor (TCF) signaling. We have shown that agents ascribed chemopreventive activity for colon cancer in fact also stimula...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2002-11, Vol.62 (21), p.6006-6010 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mutations in the adenomatous polyposis coli (APC) gene, which initiate almost all human colon cancers, directly target the proto-oncogene, c-myc, by elevating beta-catenin/T-cell factor (TCF) signaling. We have shown that agents ascribed chemopreventive activity for colon cancer in fact also stimulate beta-catenin/TCF activity in vitro. Their effects on c-myc transcription were assayed using a novel variant of fluorescence in situ hybridization that detects c-myc transcription sites in intact nuclei. Increased transcriptional initiation of c-myc induced by the short-chain fatty acid, butyrate, consistent with elevated beta-catenin/TCF activity, was efficiently abrogated by a block to transcriptional elongation, resulting in decreased c-myc expression. 1alpha,25-Dihydroxyvitamin D(3) also induced transcriptional blockage. In contrast, the nonsteroidal anti-inflammatory drug, sulindac, increased c-myc expression, an effect attributable at least in part to its failure to induce transcriptional blockage. We have described a novel approach for evaluating the effects of chemopreventive agents on the expression of a gene critical in colonic tumorigenesis. |
---|---|
ISSN: | 0008-5472 1538-7445 |