Optimized treatment planning for prostate cancer comparing IMPT, VHEET and 15 MV IMXT

The merits of intensity-modulated very-high energy electron therapy (VHEET) and intensity-modulated proton therapy (IMPT) in relation to intensity-modulated x-ray therapy (IMXT) with respect to the treatment of the prostate have been quantified. Optimized dose distributions were designed for 5-11 be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2002-07, Vol.47 (13), p.2247-2261, Article 305
Hauptverfasser: Yeboah, C, Sandison, G A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The merits of intensity-modulated very-high energy electron therapy (VHEET) and intensity-modulated proton therapy (IMPT) in relation to intensity-modulated x-ray therapy (IMXT) with respect to the treatment of the prostate have been quantified. Optimized dose distributions were designed for 5-11 beams of 250 MeV VHEET and 15 MV IMXT as well as 1-9 beam ports of IMPT. In the case of the comparison between 250 MeV VHEET and 15 MV IMXT, it was found that the quality of target coverage achievable with VHEET was comparable to or sometimes better than that provided by IMXT. However, VHEET provided an improvement over IMXT in the dose sparing of the sensitive structures and normal tissues. Compared to IMXT, VHEET decreased the mean rectal dose and bladder dose by up to 10% of the prescribed target dose, while reducing by up to 12% of the prescribed target dose the integral dose to normal tissues. In quantifying the merits of IMPT relative to IMXT, it was found that using intensity-modulated proton beams for inverse planning instead of intensity-modulated photon beams improved target dose homogeneity by up to 1.3% of the prescribed target dose, while reducing the mean rectal dose, bladder dose, and normal tissue integral dose by up to 27%, 30% and 28% of the prescribed target dose respectively. The comparison of optimized planning for IMPT and VHEET showed that the quality of target coverage achievable with IMPT is comparable to or better (by up to 1.3% of the prescribed target dose) than that provided by VHEET. Compared to VHEET, IMPT delivered a mean rectal dose and a bladder dose that was lower by up to 17% and 23% of prescribed target dose respectively, and also reduced the integral dose to normal tissues by up to 17% of the prescribed target dose. These results indicate that of the three modalities the greatest dose escalation will be possible with IMPT, then VHEET, and then IMXT. It follows that IMPT will result in the highest probability of complication-free tumour control, while IMXT will provide the lowest probability.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/47/13/305