Mammalian Mediator Subunit mMED8 is an Elongin BC-Interacting Protein That Can Assemble with Cul2 and Rbx1 to Reconstitute a Ubiquitin Ligase
The heterodimeric Elongin BC complex has been shown to interact in vitro and in cells with a conserved BC-box motif found in an increasing number of proteins including RNA polymerase II elongation factor Elongin A, suppressor of cytokine signaling (SOCS)-box proteins, and the von Hippel-Lindau tumor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2002-08, Vol.99 (16), p.10353-10358 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The heterodimeric Elongin BC complex has been shown to interact in vitro and in cells with a conserved BC-box motif found in an increasing number of proteins including RNA polymerase II elongation factor Elongin A, suppressor of cytokine signaling (SOCS)-box proteins, and the von Hippel-Lindau tumor suppressor protein. Recently, the Elongin BC complex was found to function as an adaptor that links these BC-box proteins to a module composed of Cullin family members Cul2 or Cul5 and RING-H2 finger protein Rbx1 to reconstitute a family of E3 ubiquitin ligases that activate ubiquitylation by the E2 ubiquitin-conjugating enzyme Ubc5. As part of our effort to understand the functions of Elongin BC-based ubiquitin ligases, we exploited a modified yeast two-hybrid screen to identify a mammalian BC-box protein similar in sequence to Saccharomyces cerevisiae Mediator subunit Med8p. In this report we demonstrate (i) that mammalian MED8 is a subunit of the mammalian Mediator complex and (ii) that MED8 can assemble with Elongins B and C, Cul2, and Rbx1 to reconstitute a ubiquitin ligase. Taken together, our findings are consistent with the model that MED8 could function to recruit ubiquitin ligase activity directly to the RNA polymerase II transcriptional machinery. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.162424199 |